Publications by authors named "Hangyuan Shi"

It is important to understand the spatial distribution characteristics and health risks of soil heavy metals for the implementation of soil pollution control measures in different levels and regions. Based on the data of 706 core studies in the last 20 years, the spatial distribution characteristics, accumulation degree, and health risks of soil heavy metals in China were analyzed at the provincial level. The results showed that the soil heavy metals had obvious spatial differences on the provincial scale, with an overall trend of "high in the south and low in the north and high in the east and low in the west.

View Article and Find Full Text PDF

The accurate identification of pollution sources is essential for the prevention and control of possible pollution from soil heavy metals (SHMs). However, the positive matrix factorisation (PMF) model has been widely used as a conventional method for pollution source apportionment, and the classification of source apportionment results mainly relies on existing research and expert experience, which can result in high subjectivity in the source interpretation. To address this limitation, a comprehensive source apportionment framework was developed based on advanced machine learning techniques that combine self-organizing mapping and PMF with a gradient boosting decision tree (GBDT) model.

View Article and Find Full Text PDF

The accurate identification of pollution sources is important for controlling soil pollution. However, the widely used Positive matrix factorization (PMF) model generally relies on knowledge and experience to accurately identify pollution sources; thus, this method faces significant challenges in objectively identifying soil pollution sources. Herein, we established a comprehensive source analysis framework using factor identification and geospatial analysis, and revealed the factors contributing to trace metal(loid) (TM) pollution in soil in the Pearl River Delta (PRD), China.

View Article and Find Full Text PDF

Three soil samples from a chromium (Cr)-contaminated field were classified into five particle fractions (i.e., 0-50 μm, 50-100 μm, 100-250 μm, 250-500 μm, and 500-1000 μm) and were further characterized to study their physicochemical properties and Cr bioaccessibility.

View Article and Find Full Text PDF