Nanofiber neuromorphic transistors are regarded as promising candidates for mimicking brain-like learning and advancing high-performance computing. Composite nanofibers (CNFs) typically exhibit enhanced optoelectronic and mechanical properties. In this study, indium-gallium-zinc oxide (IGZO)/polyvinylpyrrolidone (PVP) CNFs were synthesized, and the neuromorphic transistor was integrated on both rigid and flexible substrates.
View Article and Find Full Text PDFBrain-computer interfaces (BCIs) that enable human-machine interaction have immense potential in restoring or augmenting human capabilities. Traditional BCIs are realized based on complementary metal-oxide-semiconductor (CMOS) technologies with complex, bulky, and low biocompatible circuits, and suffer with the low energy efficiency of the von Neumann architecture. The brain-neuromorphics interface (BNI) would offer a promising solution to advance the BCI technologies and shape the interactions with machineries.
View Article and Find Full Text PDFHardware implementation tailored to requirements in reservoir computing would facilitate lightweight and powerful temporal processing. Capacitive reservoirs would boost power efficiency due to their ultralow static power consumption but have not been experimentally exploited yet. Here, this work reports an oxide-based memcapacitive synapse (OMC) based on Zr-doped HfO (HZO) for a power-efficient and multisensory processing reservoir computing system.
View Article and Find Full Text PDF