Publications by authors named "Hangyi Wu"

Elesclomol (ES) as an efficient Cu ionophore can specifically transport Cu into mitochondria and disrupt intracellular Cu homeostasis. Extra intracellular Cu induces cuproptosis and chemodynamic therapy (CDT), which further cascades immunogenic cell death (ICD) and activates antitumor immune responses. However, the tumor immunosuppressive microenvironment (TIM) attenuates the efficiency of the immune response.

View Article and Find Full Text PDF
Article Synopsis
  • Intratumoral injection of CAR-T cells for melanoma treatment offers reduced systemic side effects and higher CAR-T cell concentration, but challenges like few targeting ligands and a tough tumor microenvironment (TME) hinder effectiveness.
  • A novel nanogel, HA-Mn-CAP Gel, was developed to target receptors in melanoma, releasing manganese to alleviate tumor hypoxia and boost CAR-T cell ligand expression, showing over a 2.7 times increase in NKGD ligand levels in melanoma cells.
  • When combined with CAR-T therapy, HA-Mn-CAP Gel enhanced T cell proliferation and infiltration, increasing tumor inhibition rates significantly, suggesting this approach could improve therapies for solid tumors.
View Article and Find Full Text PDF

Cuproptosis is an emerging cell death pathway that depends on the intracellular Cu ions. Elesclomol (ES) as an efficient Cu ionophore can specifically transport Cu into mitochondria and trigger cuproptosis. However, ES can be rapidly removed and metabolized during intravenous administration, leading to a short half-life and limited tumor accumulation, which hampers its clinical application.

View Article and Find Full Text PDF

Melittin (M) has attracted increasing attention for its significant antitumor effects and various immunomodulatory effects. However, various obstacles such as the short plasma half-life and adverse reactions restrict its application. This study aimed to systematically investigate the self-assembly mechanism, components of the protein corona, targeting behavior, and anti-4 T1 tumor effect of vitamin E-succinic acid-(glutamate) /melittin nanoparticles with varying amounts of glutamic acid.

View Article and Find Full Text PDF

The incidence of ulcerative colitis (UC) is rising worldwide. As a refractory and recurrent disease, UC could seriously affect the patients' quality of life. However, current clinical medical treatments for UC are accompanied by various side effects, especially for long-term applications.

View Article and Find Full Text PDF

In vitro permeation test (IVPT) is a frequently used method for in vitro assessment of topical preparations and transdermal drug delivery systems. However, the storage of ex vivo skin for IVPT remains a challenge. Here, two cryopreservation media were chosen to preserve rat and pig skin at -20 °C and -80 °C for further IVPT, namely, 10 % DMSO and 10 % GLY.

View Article and Find Full Text PDF

Chronic diabetic wound remains a critical challenge suffering from the complicated negative microenvironments, such as high-glucose, excessive reactive oxygen species (ROS), hypoxia and malnutrition. Unfortunately, few strategies have been developed to ameliorate the multiple microenvironments simultaneously. In this study, sp.

View Article and Find Full Text PDF

SALT, a new dedicated readout Application Specific Integrated Circuit (ASIC) for the Upstream Tracker, a new silicon detector in the Large Hadron Collider beauty (LHCb) experiment, has been designed and developed. It is a 128-channel chip using an innovative architecture comprising a low-power analogue front-end with fast pulse shaping and a 40 MSps 6-bit Analog-to-Digital Converter (ADC) in each channel, followed by a Digital Signal Processing (DSP) block performing pedestal and Mean Common Mode (MCM) subtraction and zero suppression. The prototypes of SALT were fabricated and tested, confirming the full chip functionality and fulfilling the specifications.

View Article and Find Full Text PDF

Panax Notoginseng Saponins (PNS) has been widely used in the prevention and treatment of cardiovascular and cerebrovascular diseases such as myocardial infarction, heart failure and cerebral infarction. However, oral administration of PNS showed low bioavailability because of its instability and poor membrane permeability in the gastrointestinal tract. Here, lipoprotein-inspired hybrid nanoparticles of PNS-Lecithin-Zein (PLZ-NPs) were prepared by using a simple phase separation method, which possessed a core-shell structure, where zein was used as protein part to replace the animal origin protein to increase the resistance to acid and enzymes while lecithin was used as the lipid composition to improve the oral absorption of PNS as well as to increase the drug loading capacity of PNS into the nanocarriers.

View Article and Find Full Text PDF

Most anticancer drugs are not orally bioavailable due to their undesirable physicochemical properties and inherent physiological barriers. In this study, a polymeric prodrug strategy was presented to enhance the oral bioavailability of BCS class IV drugs using paclitaxel (PTX) as the model drug. PTX was covalently conjugated with cholic acid-functionalized PEG by a redox-sensitive disulfide bond.

View Article and Find Full Text PDF

Fungal infections are one of the major skin healthcare issues and cause significant morbidity. Ketoconazole (KC) as a broad-spectrum antifungal drug is widely used to treat skin fungal diseases. However, its therapeutic effects are limited by low concentration, short duration of drug efficacy in the skin and severe systemic toxicity.

View Article and Find Full Text PDF

A novel nanocrystals delivery system of parthenolide (PTL) was designed to combined application with sorafenib (Sora) for advanced hepatocellular carcinoma (HCC) therapy, attempting to not only improve the poor aqueous solubility of PTL, but also enhance the synergistic therapeutic effects with Sora. The PTL nanocrystals (PTL-NCs) were prepared by precipitation-high-pressure homogenization method. The formed PTL-NCs with rod morphology possessed size of 126.

View Article and Find Full Text PDF

Recently, liposomes have been widely used in cancer therapeutics, but their anti-tumor effects are suboptimal due to limited tumor penetration. To solve this problem, researchers have made significant efforts to optimize liposomal diameters and potentials, but little attention has been paid to liposomal membrane rigidity. Herein, we sought to demonstrate the effects of cholesterol-tuned liposomal membrane rigidity on tumor penetration and anti-tumor effects.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongdqlt0gol8sb26mhns96092gm27b71hr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once