The high-quality factor resonant metasurfaces have extensive applications in enhancing nonlinear frequency conversion efficiency at the subwavelength scale. However, methods for actively modulating the frequency conversion process are limited. We design a chiral lithium niobate film metasurface and investigate the photonic spin as a new degree of freedom to dynamically control the second-order nonlinear frequency conversion, without reconfiguring the structure by using external stimuli.
View Article and Find Full Text PDFOptical metasurfaces with high-quality-factor resonances and selective chirality simultaneously are desired for nanophotonics. Here, an all-dielectric planar chiral metasurface is theoretically proposed and numerically proved to support the astonishing symmetry-protected bound state in the continuum (BIC), due to the preserved π rotational symmetry around the axis and up-down mirror symmetry simultaneously. Importantly, such BIC is a vortex polarization singularity enclosed by elliptical eigenstate polarizations with non-vanishing helicity, owing to the broken in-plane mirror symmetry.
View Article and Find Full Text PDF