Nanomaterials (Basel)
September 2024
Strontium aluminate, with suitable lattice parameters and environmentally friendly water solubility, has been strongly sought for use as a sacrificial layer in the preparation of freestanding perovskite oxide thin films in recent years. However, due to this material's inherent water solubility, the methods used for the preparation of epitaxial films have mainly been limited to high-vacuum techniques, which greatly limits these films' development. In this study, we prepared freestanding single-crystal perovskite oxide thin films on strontium aluminate using a simple, easy-to-develop, and low-cost chemical full-solution deposition technique.
View Article and Find Full Text PDFCsPbI perovskite quantum dots (QDs) could achieve pure-red emission by reducing their size, but the increased exciton binding energy () and surface defects for the small-sized QDs (SQDs) cause severe Auger and trap recombinations, thus worsening their electroluminescence (EL) performance. Herein, we utilize the dangling bonds of the SQDs as a driving force to accelerate KI dissolution to solve its low solubility in nonpolar solvents, thereby allowing K and I to bond to the surface of SQDs. The of the SQDs was decreased from 305 to 51 meV because of the attraction of K to electrons, meanwhile surface vacancies were passivated by K and I.
View Article and Find Full Text PDFDouble perovskite films have been extensively studied for ferroelectric order, ferromagnetic order, and photovoltaic effects. The customized ion combinations and ordered ionic arrangements provide unique opportunities for bandgap engineering. Here, a synergistic strategy to induce chemical strain and charge compensation through inequivalent element substitution is proposed.
View Article and Find Full Text PDFPolarization rotation caused by various strains, such as substrate and/or chemical strain, is essential to control the electronic structure and properties of ferroelectric materials. This study proposes anion-induced polarization rotation with chemical strain, which effectively improves ferroelectricity. A method for the sulfurization of BiFeO thin films by introducing sulfur anions is presented.
View Article and Find Full Text PDFThe microwave sintering of glass-ceramics, non-thermal microwave effect, and crystal growth mechanism remain important challenges in materials science. In this study, we focus on developing approaches to affect crystal growth in the glass network of glass-ceramics by microwave heating, rather than performing a single study on the crystal structure and type. Raman spectroscopy is used to detect the structure of the glass network.
View Article and Find Full Text PDF