Electrochemical water splitting holds promise for sustainable hydrogen production but restricted by the sluggish reaction kinetics at the anodic oxygen evolution. Herein, we present a room-temperature spontaneous corrosion strategy to convert inexpensive iron (Fe) on iron foam substrates into highly active and stable self-supporting nickel iron layered hydroxide (NiFe LDH) catalysts. The corrosion evolution mechanisms are elucidated combining ex-situ scanning electron microscopy (SEM) and X-ray photo electron spectroscopy (XPS) techniques, demonstrating precise control over the concentration of Ni2+ and reaction time to achieve controllable micro-structures of NiFe LDH.
View Article and Find Full Text PDFElectrochemical water-splitting to produce hydrogen is potential to substitute the traditional industrial coal gasification, but the oxygen evolution kinetics at the anode remains sluggish. In this paper, sea urchin-like Fe doped NiS catalyst growing on nickel foam (NF) substrate is constructed via a simple two-step strategy, including surface iron activation and post sulfuration process. The NF-Fe-NiS obtains at temperature of 130 °C (NF-Fe-NiS-130) features nanoneedle-like arrays which are vertically grown on the particles to form sea urchin-like morphology, features high electrochemical surface area.
View Article and Find Full Text PDFThe development of lithium-ion batteries with simplified assembling steps and fast charge capability is crucial for current battery applications. In this study, we propose a simple in-situ strategy for the construction of high-dispersive cobalt oxide (CoO) nanoneedle arrays, which grow vertically on a copper foam substrate. It is demonstrated that this nanoneedle CoO electrodes provide abundant electrochemical surface area.
View Article and Find Full Text PDF