Tissue engineering at single-cell resolution has enhanced therapeutic efficacy. Droplet microfluidics offers a powerful platform that allows deterministic single-cell encapsulation into aqueous droplets, yet the direct encapsulation of cells into microgels remains challenging. Here, the design of a microfluidic device that is capable of single-cell encapsulation within polyethylene glycol norbornene (PEGNB) hydrogels on-chip is reported.
View Article and Find Full Text PDFCell therapies require control over the cellular response under standardized conditions to ensure continuous delivery of therapeutic agents. Cell encapsulation in biomaterials can be particularly effective at providing cells with a uniformly supportive and permissive cell microenvironment. In this study, two microfluidic droplet device designs were used to successfully encapsulate equine mesenchymal stromal cells (MSCs) into photopolymerized polyethylene glycol norbornene (PEGNB) microscale (∼100-200 μm) hydrogel particles (microgels) in a single on-chip step.
View Article and Find Full Text PDF