ACS Appl Mater Interfaces
October 2019
Electric double-layer (EDL) gating using a custom-synthesized polyester single-ion conductor (PE400-Li) is demonstrated on two-dimensional (2D) crystals for the first time. The electronic properties of graphene and MoTe field-effect transistors (FETs) gated with the single-ion conductor are directly compared to a poly(ethylene oxide) dual-ion conductor (PEO:CsClO). The anions in the single-ion conductor are covalently bound to the backbone of the polymer, leaving only the cations free to form an EDL at the negative electrode and a corresponding cationic depletion layer at the positive electrode.
View Article and Find Full Text PDFA strategy for creating elastomeric conducting polyaniline networks is described. Simultaneous elastomeric mechanical properties (E < 10 MPa) and electronic conductivities (σ > 10 S cm(-1)) are achieved via molecular templating of conjugated polymer networks. Diblock copolymers with star topologies processed into self-assembled elastomeric thin films reduce the percolation threshold of polyaniline synthesized via in situ polymerization.
View Article and Find Full Text PDFprepared by colloidal crystals templating display highly reversible shape memory properties, as confirmed by indirect electron microscopy imaging of their inverse replicas and direct nanoscale resolution X-ray microscopy imaging of the hydrated hydrogels. Modifications of functional groups in the 3DOM hydrogels result in various materials with programmed properties for a wide range of applications.
View Article and Find Full Text PDFThe emergence of flexible and stretchable electronic components expands the range of applications of electronic devices. Flexible devices are ideally suited for electronic biointerfaces because of mechanically permissive structures that conform to curvilinear structures found in native tissue. Most electronic materials used in these applications exhibit elastic moduli on the order of 0.
View Article and Find Full Text PDFA new series of azobenzene-dimers were synthesized and doped into the blue phase liquid crystals to broaden the temperature range of BPs. It is found that not only can the reflection wavelength of BPI be reversibly controlled but BPI can also be transformed into the cholesteric phase owing to isomerization of azobenzene induced by light.
View Article and Find Full Text PDFHuan Jing Ke Xue
October 2010
The spherical mesoporous particles with two-dimensional (2D) hexagonal mesopores in diameter up to 11.6 nm was fabricated in acetic acid/sodium buffer solution (pH = 3.5) by using tetramethoxysilane (TMOS) as silica source, Pluronic P123 as template and 1,3,5-triisopropylbenzene (TIPB) as swelling agent.
View Article and Find Full Text PDFThis article exposes a facial approach to self-assemble polyaniline (PANI) nanowires with thin diameter (approximately 10 nm) and high room-temperature conductivity (approximately 10(0) S/cm) by using Fe(2)(SO(4))(3) as a binary oxidant and dopant. The new method not only saves hard templates and postprocess of template removal but also simplifies the reagent. Formation yield, diameter, and room-temperature conductivity of the nanowires are affected by the molar ratios of Fe(2)(SO(4))(3) to aniline.
View Article and Find Full Text PDFNovel cage-like and electromagnetic functional polyaniline (PANI)/CoFe2O4 composite nanostructures, in which the self-assembled PANI nanofibers (approximately 15 nm in diameter) entwined around the octahedral CoFe2O4 magnet acting as the nucleation site or template, were successfully prepared by FeCl3 as either oxidant and dopant via a self-assembly process. The coordination effect of the magnet as a nucleation site or template and the magnetic interaction between the PANI nanofibers and CoFe2O4 as a driving force results in such cage-like nanostructures. The cage-like composite nanostructures not only have high conductivity (sigmamax approximately 5.
View Article and Find Full Text PDF