Saponin-based vaccine adjuvants are potent in preclinical animal models and humans, but their mechanisms of action remain poorly understood. Here, using a stabilized HIV envelope trimer immunogen, we carried out studies in nonhuman primates (NHPs) comparing the most common clinical adjuvant aluminum hydroxide (alum) with saponin/monophosphoryl lipid A nanoparticles (SMNP), an immune-stimulating complex-like adjuvant. SMNP elicited substantially stronger humoral immune responses than alum, including 7-fold higher peak antigen-specific germinal center B-cell responses, 18-fold higher autologous neutralizing antibody titers, and higher levels of antigen-specific plasma and memory B cells.
View Article and Find Full Text PDFSaponin-based vaccine adjuvants are potent in preclinical animal models and humans, but their mechanisms of action remain poorly understood. Here, using a stabilized HIV envelope trimer immunogen, we carried out studies in non-human primates (NHPs) comparing the most common clinical adjuvant alum with Saponin/MPLA Nanoparticles (SMNP), a novel ISCOMs-like adjuvant. SMNP elicited substantially stronger humoral immune responses than alum, including 7-fold higher peak antigen-specific germinal center B cell responses, 18-fold higher autologous neutralizing antibody titers, and higher levels of antigen-specific plasma and memory B cells.
View Article and Find Full Text PDFThe induction of durable protective immune responses is the main goal of prophylactic vaccines, and adjuvants play an important role as drivers of such responses. Despite advances in vaccine strategies, a safe and effective HIV vaccine remains a significant challenge. The use of an appropriate adjuvant is crucial to the success of HIV vaccines.
View Article and Find Full Text PDFFc-mediated antibody effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), can contribute to the containment HIV-1 replication but whether such activities are sufficient for protection is unclear. We previously identified an antibody to the variable 2 (V2) apex of the HIV-1 Env trimer (PGT145) that potently directs the lysis of SIV-infected cells by NK cells but poorly neutralizes SIV infectivity. To determine if ADCC is sufficient for protection, separate groups of six rhesus macaques were treated with PGT145 or a control antibody (DEN3) by intravenous infusion followed five days later by intrarectal challenge with SIVmac239.
View Article and Find Full Text PDFAdjuvants and antigen delivery kinetics can profoundly influence B cell responses and should be critically considered in rational vaccine design, particularly for difficult neutralizing antibody targets such as human immunodeficiency virus (HIV). Antigen kinetics can change depending on the delivery method. To promote extended immunogen bioavailability and to present antigen in a multivalent form, native-HIV Env trimers are modified with short phosphoserine peptide linkers that promote tight binding to aluminum hydroxide (pSer:alum).
View Article and Find Full Text PDFElectron microscopy-based polyclonal epitope mapping (EMPEM) can delineate epitope specificities of serum antibodies to a given antigen following vaccination or infection. Here, we present a protocol for the EMPEM method for rapid high-throughput assessment of antibody responses to glycoprotein antigens in vaccination and infection studies. We describe steps for antibody isolation and digestion, antigen complex and purification, and electron microscope imaging.
View Article and Find Full Text PDFAdaptive immunity is didactically partitioned into humoral and cell-mediated effector mechanisms, which may imply that each arm is separate and does not function together. Here, we report that the activation of CD8+ resident memory T cells (T) in nonlymphoid tissues triggers vascular permeability, which facilitates rapid distribution of serum antibodies into local tissues. T reactivation was associated with transcriptional upregulation of antiviral signaling pathways as well as Fc receptors and components of the complement cascade.
View Article and Find Full Text PDFThe low abundance of envelope spikes and the inability of IgG to aggregate virions render HIV-1 an inadequate target for antibody-mediated clearance by phagocytes. In an attempt to improve the ability of antibody to mediate the internalization of HIV-1 virions, we generated multimers of the broadly neutralizing HIV-1-specific monoclonal antibody (MAb) VRC01 using site-directed mutagenesis of the Fc segment. We then measured virion internalization using primary human monocytes and neutrophils.
View Article and Find Full Text PDFThe activity of broadly neutralizing antibodies (bNAbs) targeting HIV-1 depends on pleiotropic functions, including viral neutralization and the elimination of HIV-1-infected cells. Several studies have suggested that passive administration of bNAbs represents a valuable strategy for the prevention or treatment of HIV-1. In addition, different strategies are currently being tested to scale up the production of bNAbs to obtain the large quantities of antibodies required for clinical trials.
View Article and Find Full Text PDFProtection from immunodeficiency virus challenge in nonhuman primates (NHPs) by a first-generation HIV broadly neutralizing antibody (bnAb) b12 has previously been shown to benefit from interaction between the bnAb and Fcγ receptors (FcγRs) on immune cells. To investigate the mechanism of protection for a more potent second-generation bnAb currently in clinical trials, PGT121, we carried out a series of NHP studies. These studies included treating with PGT121 at a concentration at which only half of the animals were protected to avoid potential masking of FcγR effector function benefits by dominant neutralization and using a new variant that more completely eliminated all rhesus FcγR binding than earlier variants.
View Article and Find Full Text PDFNeutralizing Abs suppress HIV infection by accelerating viral clearance from blood circulation in addition to neutralization. The elimination mechanism is largely unknown. We determined that human liver sinusoidal endothelial cells (LSEC) express FcγRIIb as the lone Fcγ receptor, and using humanized FcγRIIb mouse, we found that Ab-opsonized HIV pseudoviruses were cleared considerably faster from circulation than HIV by LSEC FcγRIIb.
View Article and Find Full Text PDFSeveral HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges.
View Article and Find Full Text PDFCurr Top Microbiol Immunol
September 2020
Development of vaccines to highly variable viruses such as Human Immunodeficiency Virus and influenza A viruses faces multiple challenges. In this article, these challenges are described and reverse vaccinology approaches to generate universal vaccines against both pathogens are laid out and compared.
View Article and Find Full Text PDFUsing a transgenic mouse strain expressing the human V1-69 germline gene used by many broadly neutralizing antibodies to influenza A virus, Sangesland et al. show that the V1-69 gene segment provides the essentials for mounting antibody responses against the conserved hemagglutinin stem epitope.
View Article and Find Full Text PDFWe have developed a method to introduce novel paratopes into the human antibody repertoire by modifying the immunoglobulin (Ig) genes of mature B cells directly using genome editing technologies. We used CRISPR-Cas9 in a homology directed repair strategy, to replace the heavy chain (HC) variable region in B cell lines with that from an HIV broadly neutralizing antibody (bnAb), PG9. Our strategy is designed to function in cells that have undergone VDJ recombination using any combination of variable (V), diversity (D) and joining (J) genes.
View Article and Find Full Text PDFPassive administration of HIV neutralizing antibodies (nAbs) can protect macaques from hard-to-neutralize (tier 2) chimeric simian-human immunodeficiency virus (SHIV) challenge. However, conditions for nAb-mediated protection after vaccination have not been established. Here, we selected groups of 6 rhesus macaques with either high or low serum nAb titers from a total of 78 animals immunized with recombinant native-like (SOSIP) Env trimers.
View Article and Find Full Text PDFCharacterizing polyclonal antibody responses via currently available methods is inherently complex and difficult. Mapping epitopes in an immune response is typically incomplete, which creates a barrier to fully understanding the humoral response to antigens and hinders rational vaccine design efforts. Here, we describe a method of characterizing polyclonal responses by using electron microscopy, and we applied this method to the immunization of rabbits with an HIV-1 envelope glycoprotein vaccine candidate, BG505 SOSIP.
View Article and Find Full Text PDFImmunoglobulin A (IgA) plays an important role in protecting our mucosal surfaces from viral infection, in maintaining a balance with the commensal bacterial flora, and in extending maternal immunity via breast feeding. Here, we report an additional innate immune effector function of human IgA molecules in that we demonstrate that the C-terminal tail unique to IgA molecules interferes with cell-surface attachment of influenza A and other enveloped viruses that use sialic acid as a receptor. This antiviral activity is mediated by sialic acid found in the complex N-linked glycans at position 459.
View Article and Find Full Text PDFHIV employs multiple means to evade the humoral immune response, particularly the elicitation of and recognition by broadly neutralizing antibodies (bnAbs). Such antibodies can act antivirally against a wide spectrum of viruses by targeting relatively conserved regions on the surface HIV envelope trimer spike. Elicitation of and recognition by bnAbs are hindered by the arrangement of spikes on virions and the relatively difficult access to bnAb epitopes on spikes, including the proximity of variable regions and a high density of glycans.
View Article and Find Full Text PDFObjective: HIV-positive individuals have lower antibody titers to influenza viruses than HIV-negative individuals, and the benefits of the annual vaccinations are controversially discussed. Also, there is no information about the breadth of the antibody response in HIV-infected individuals.
Design: The binding and neutralizing antibody titers to various human and nonhuman influenza A virus strain were determined in sera from 146 HIV-infected volunteers: They were compared with those found in 305 randomly selected HIV-negative donors, and put in relation to HIV-specific parameters.
Unlabelled: The majority of influenza virus-specific antibodies elicited by vaccination or natural infection are effective only against the eliciting or closely related viruses. Rare stem-specific heterosubtypic monoclonal antibodies (hMAbs) can neutralize multiple strains and subtypes by preventing hemagglutinin (HA)-mediated fusion of the viral membrane with the endosomal membrane. The epitopes recognized by these hMAbs are therefore considered promising targets for the development of pan-influenza virus vaccines.
View Article and Find Full Text PDFBackground: The effectiveness of trivalent influenza vaccination has been confirmed in several studies. To date, it is not known whether repeated exposure and vaccination to influenza promote production of cross-reactive antibodies. Furthermore, how strains encountered earlier in life imprint the immune response is currently poorly understood.
View Article and Find Full Text PDF