Aims: To investigate the characteristics of dynamic cerebral autoregulation (dCA) in patients after mechanical thrombectomy (MT) and the relationship between dCA and prognosis.
Methods: In this prospective study, 89 and 158 patients were enrolled in the MT and non-MT groups, respectively. Both groups underwent dCA measurements within 3 days after stroke.
Three-dimensional coronary magnetic resonance angiography (CMRA) requires reconstruction algorithms that can significantly suppress the artifacts encountered in heavily undersampled acquisitions. While unrolling-based deep reconstruction methods have achieved state-of-the-art performance on 2D image reconstruction, their application in 3D reconstruction is hindered by the large amount of memory required to train an unrolled network. In this study, we propose a memoryefficient deep compressed sensing method that employs a sparsifying transform based on a pre-trained artifact estimation network.
View Article and Find Full Text PDFThe electroelastomer cylindrical actuators, a typical representation of soft actuators, have recently aroused increasing interest owing to their advantages in flexibility, deformability, and spatial utilization rate. Proprioception is crucial for controlling and monitoring the shape and position of these actuators. However, most existing flexible sensors have a modulus mismatch with the actuation unit, hindering the free movement of these actuators.
View Article and Find Full Text PDFHyperuricemia (HUA) causes vascular endothelial dysfunction and oxidative stress, and simultaneously activates the NLRP3 inflammasome, leading to inflammatory reactions and erectile dysfunction (ED). This study aimed to investigate the effects of QYHT (Quyuhuatanerxian decoction) decoction on the NLRP3 inflammasome and explore its potential in treating HUA-induced ED. This study employed four treatment methods: (a) treating HUA-induced ED patients with QYHT and analyzing changes in gut microbiota abundance and fecal metabolites through 16S sequencing; (b) establishing an HUA-induced ED rat model, treating with different doses of QYHT, and examining changes in serum metabolites; (c) conducting fecal microbiota transplantation (FMT) therapy; evaluating erectile function, oxidative stress, inflammatory response, and NLRP3 inflammasome activation levels; and (d) exploring key monomeric compounds and potential targets in QYHT through network pharmacology and molecular docking.
View Article and Find Full Text PDFBackground: There is little data about the prognostic value of mitral annular dilatation (MAD) in patients with symptomatic severe aortic regurgitation (AR) undergoing transcatheter aortic valve replacement (TAVR). This study aimed to assess the prognosis value of computed tomography (CT)-determined MAD in such patients.
Methods: Consecutive patients with symptomatic severe AR who underwent pre-TAVR CT between May 2014 and May 2023 were included in this study.
Background: Triglyceride-glucose (TyG) index was regarded as a cost-efficient and reliable clinical surrogate marker for insulin resistance (IR), which was significantly correlated with cardiovascular disease (CVD). However, the TyG index and incident CVD in non-diabetic hypertension patients remains uncertain. The aim of study was to explore the impact of TyG index level and variability on risk of CVD among non-diabetic hypertension patients.
View Article and Find Full Text PDFTargeted protein degradation (TPD) has emerged as a significant therapeutic approach for a variety of diseases, including cancer. Advances in TPD techniques, such as molecular glue (MG) and lysosome-dependent strategies, have shown substantial progress since the inception of the first PROTAC in 2001. The PROTAC methodology represents the forefront of TPD technology, with ongoing evaluation in more than 20 clinical trials for the treatment of diverse medical conditions.
View Article and Find Full Text PDFBackground: Hemorrhagic myocardial infarction (hMI) can rapidly diminish the benefits of reperfusion therapy and direct the heart toward chronic heart failure. T2∗ cardiac magnetic resonance (CMR) is the reference standard for detecting hMI. However, the lack of clarity around the earliest time point for detection, time-dependent changes in hemorrhage volume, and the optimal methods for detection can limit the development of strategies to manage hMI.
View Article and Find Full Text PDFBackground: Approximately half of the patients with acute ischemic stroke who receive intravenous thrombolysis (IVT) do not achieve an excellent outcome. Remote ischemic conditioning (RIC) as a promising neuroprotective treatment may improve clinical outcomes in this population. This study aimed to assess the efficacy and safety of RIC in patients with IVT.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
December 2024
Purpose To compare the acquisition time, image quality, and late gadolinium enhancement (LGE) visualization and quantification on phase-sensitive inversion recovery (PSIR) images using 5.0-T versus 3.0-T cardiac MRI.
View Article and Find Full Text PDFBackground: Currently, validated biomarkers for assessing hemorrhagic transformation (HT) after intravenous thrombolysis (IVT) are lacking. We aimed to validate a test combining GFAP (glial fibrillary acidic protein) and UCH-L1 (ubiquitin C-terminal hydrolase-L1) to indicate the absence of HT after IVT.
Methods: We prospectively enrolled consecutive patients with stroke treated with IVT from 16 hospitals.
Terahertz wave sources are essential for the development of terahertz technology. A terahertz radiation source based on dielectric gratings driven by free electrons is proposed in this paper. Electrons emitted by the emitter excite spoof surface plasmons (SSPs) when passing above the structure.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
December 2024
Background: Although quantitative myocardial T1 and T2 mappings are clinically used to evaluate myocardial diseases, their application needs a minimum of six breath-holds to cover three short-axis slices. The purpose of this work is to simultaneously quantify multislice myocardial T1 and T2 across three short-axis slices in one breath-hold by combining simultaneous multislice (SMS) with multimapping.
Methods: An SMS-Multimapping sequence with multiband radiofrequency (RF) excitations and Cartesian fast low-angle shot readouts was developed for data acquisition.
Eur Heart J Imaging Methods Pract
July 2024
Aims: A new model of computational fluid dynamics (CFD)-based algorithm for coronary CT angiography (CCTA)-derived fractional flow reserve (FFR) (CT-FFR) analysis by expanding the coronary tree to smaller-diameter lumen (0.8 mm) using Newton-Krylov-Schwarz (NKS) method to solve the three-dimensional time-dependent incompressible Navier-Stokes equations has been developed; however, the diagnostic performance of this new method has not been sufficiently investigated. The aim of this study was to determine the diagnostic performance of a novel CT-FFR technique by expanding the coronary tree in the CFD domain.
View Article and Find Full Text PDFObjectives: We aimed to develop a predictive model based on textural features of noncontrast cardiac magnetic resonance (CMR) imaging for risk stratification toward adverse events in patients with cardiac amyloidosis (CA).
Methods: A cohort of 78 patients with CA was grouped into training (n = 54) and validation (n = 24) sets at a ratio of 7:3. A total of 275 textural features were extracted from the CMR images.
ACS Biomater Sci Eng
November 2024
Three-dimensional (3D) bioprinting technology stands out as a promising tissue manufacturing process to control the geometry precisely with cell-loaded bioinks. However, the isotropic culture environment within the bioink and the lack of topographical cues impede the formation of oriented cardiac tissue. To overcome this limitation, we present a novel method named 3D nanofiber-assisted embedded bioprinting (3D-NFEP) to fabricate cardiac tissue with an oriented morphology.
View Article and Find Full Text PDFObjective: To propose a 3D nonrigid registration method that accurately estimates the 3D displacement field from artifact-corrupted Coronary Magnetic Resonance Angiography (CMRA) images.
Methods: We developed a novel registration framework for registration of artifact-corrupted images based on a 3D U-Net initializer and a deep unrolling network. By leveraging a supervised learning framework with training labels estimated from fully-sampled images, the unrolling network learns a task-specific motion prior which reduces motion estimation biases caused by undersampling artifacts in the source images.
Efficient ion transport and enriched responsive modals via modulating electrochemical properties of conductivity and capacitance are essential for soft electro-ionic actuators. However, cost-effective and straightforward approaches to achieve expedited fabrication of active electrode materials capable of multimodal-responsiveness remain limited. Herein, this work reports the one-step ultrafast laser direct patterning method, to readily synthesize electro- and magneto-active electrode material, derived from the unique cobalt-phosphorus co-doped core-shell heterostructures within 3D graphene frameworks, for fulfilling the dual-mode responsive electro-ionic actuators.
View Article and Find Full Text PDFIntroduction: High-resolution whole-heart coronary magnetic resonance angiography (CMRA) often suffers from unreasonably long scan times, rendering imaging acceleration highly desirable. Traditional reconstruction methods used in CMRA rely on either hand-crafted priors or supervised learning models. Although the latter often yield superior reconstruction quality, they require a large amount of training data and memory resources, and may encounter generalization issues when dealing with out-of-distribution datasets.
View Article and Find Full Text PDFBiomed Pharmacother
October 2024
The underlying mechanisms of diseases affecting the central nervous system (CNS) remain unclear, limiting the development of effective therapeutic strategies. Remarkably, cellular senescence, a biological phenomenon observed in cultured fibroblasts in vitro, is a crucial intrinsic mechanism that influences homeostasis of the brain microenvironment and contributes to the onset and progression of CNS diseases. Cellular senescence has been observed in disease models established in vitro and in vivo and in bodily fluids or tissue components from patients with CNS diseases.
View Article and Find Full Text PDFTemperature-responsive materials with excellent reliability, sensitivity, and flame-retardant properties have always been an urgent need in the field of intelligent fire protection. In this discourse, we introduce a novel thermosensitive ionic hydrogel coating (gelatin/poly(acrylamide-co-acrylic acid)/CaCl/spindle-shaped aluminum hydroxide nanosheet/glycerol, HCA) synthesized via free radical polymerization. HCA not only demonstrates considerable mechanical properties with a fracture strain of up to 842.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
In vitro cardiomyocyte mechano-sensing platform is crucial for evaluating the mechanical performance of cardiac tissues and will be an indispensable tool for application in drug discovery and disease mechanism study. Magnetic sensing offers significant advantages in real-time, in situ wireless monitoring and resistance to ion interference. However, due to the mismatch between the stiffness of traditional rigid magnetic material and myocardial tissue, sensitivity is insufficient and it is difficult to achieve cell structure induction and three-dimensional cultivation.
View Article and Find Full Text PDF