Publications by authors named "Hanfeng Qin"

The development of an intelligent nanomotor system holds great promise for enhancing the efficiency and effectiveness of antitumor therapy. Leveraging the overexpressed substances in the tumor microenvironment as propellants and chemotactic factors for enzyme-powered nanomotors represents a versatile and compelling approach. Herein, a plasma amine oxidase (PAO)-based chemotactic nanomotor system has been successfully developed, with the ability to enzymatically produce toxic acrolein and HO from the upregulated polyamines (PAs) in the tumor microenvironment for active tumor therapy.

View Article and Find Full Text PDF
Article Synopsis
  • Light-propelled nanomotors can turn light into mechanical movement and show promise for advanced drug delivery systems, but have limitations due to poor penetration of light and biocompatibility issues.
  • Researchers developed a new asymmetric nanomotor called Pd@ZIF-8/R848@M JNMs that performs better under near-infrared-II (NIR-II) light, allowing it to move deeper into tumors for more effective treatment.
  • By combining photothermal therapy with immune activation using Resiquimod, this innovative dual photoimmunotherapy shows significant potential in treating hepatocellular carcinoma by transforming the tumor environment to enhance immune responses.
View Article and Find Full Text PDF

Sepsis is a highly heterogeneous syndrome normally characterized by bacterial infection and dysregulated systemic inflammatory response that leads to multiple organ failure and death. Single anti-inflammation or anti-infection treatment exhibits limited survival benefit for severe cases. Here a biodegradable tobramycin-loaded magnesium micromotor (Mg-Tob motor) is successfully developed as a potential hydrogen generator and active antibiotic deliverer for synergistic therapy of sepsis.

View Article and Find Full Text PDF

Nanotechnology-based strategy has recently drawn extensive attention for the therapy of malignant tumors due to its distinct strengths in cancer diagnosis and treatment. However, the limited intratumoral permeability of nanoparticles is a major hurdle to achieving the desired effect of cancer treatment. Due to their superior cargo towing and reliable penetrating property, micro-/nanomotors (MNMs) are considered as one of the most potential candidates for the coming generation of drug delivery platforms.

View Article and Find Full Text PDF

Nanoparticle-based drug delivery systems have gained much attention in the treatment of various malignant tumors during the past decades. However, limited tumor penetration of nanodrugs remains a significant hurdle for effective tumor therapy due to the existing biological barriers of tumoral microenvironment. Inspired by bubble machines, here we report the successful fabrication of biomimetic nanodevices capable of in-situ secreting cell-membrane-derived nanovesicles with smaller sizes under near infrared (NIR) laser irradiation for synergistic photothermal/photodynamic therapy.

View Article and Find Full Text PDF

Tumor recurrence remains the leading cause of treatment failure following surgical resection of glioblastoma (GBM). M2-like tumor-associated macrophages (TAMs) infiltrating the tumor tissue promote tumor progression and seriously impair the efficacy of chemotherapy and immunotherapy. In addition, designing drugs capable of crossing the blood-brain barrier and eliciting the applicable organic response is an ambitious challenge.

View Article and Find Full Text PDF

Increasing O demand and excessive ROS production are the main features of arthritic microenvironment in rheumatoid arthritis (RA) joints and further play pivotal roles in inflammation exacerbation. In this work, a system of in situ regulation of arthritic microenvironment based on nanomotor strategy is proposed for active RA therapy. The synthesized MnO -motors enable catalytic regulation of RA microenvironment by consuming the overproduced H O and generating O synergistically.

View Article and Find Full Text PDF