Publications by authors named "Hanfei Ye"

This study investigates the inhibitory effects of lignin on gluten digestibility and elucidates the underlying mechanism using static in vitro digestion protocols involving pepsin and pancreatin. Gluten digestibility was evaluated based on the degree of protein hydrolysis (DH), peptides' profile, and free amino acids (AAs) content. The interactions between lignin and gluten under digestive conditions and their impact on proteolytic enzyme activities were examined through various analytical techniques, including scanning electron microscopy (SEM), viscosity measurements, ζ-potential analysis, and enzyme kinetics.

View Article and Find Full Text PDF

In the current study, how pectin retards the digestibility of wheat gluten was investigated using a static in vitro gastric-duodenal model. The degree of protein hydrolysis was estimated using the o-phthaldialdehyde method, while the in vitro digestograms were mathematically fitted using a single first-order kinetics model. Peptides' profile, free amino acids compositions, gluten-pectin interactions and their effects on enzymatic activities of proteolytic enzymes as well as on the gluten secondary structures under digestive conditions were studied using combined techniques.

View Article and Find Full Text PDF

How different dietary fibers including pectin, cellulose and lignin affect casein digestibility was studied using in vitro static protocols. Peptides' profile, free amino acids (AAs) content, casein-DF interactions and their influences on enzymatic activities of proteolytic enzymes were studied using combined techniques. Under gastric and intestinal digestive conditions, while pectin could reduce casein digestibility (with an averaged decrease of 12.

View Article and Find Full Text PDF

Plastid ribosomal proteins play a crucial role in the growth and development of plants, mainly in the gene expression and translation of key genes in chloroplasts. While some information is known about the regulatory processes of plastid ribosomal proteins in various plant species, there is limited knowledge about the underlying mechanisms in rice. In this study, ethyl methanesulfonate (EMS) mutagenesis was used to generate a new mutant called wlp3 (white leaf and panicle3), characterized by white or albino leaves and panicles, which exhibited this phenotype from the second leaf stage until tillering.

View Article and Find Full Text PDF

The CRISPR-Cas9 system is composed of a clustered regularly interspaced short palindromic repeat (CRISPR) and its associated proteins, which are widely present in bacteria and archaea, serving as a specific immune protection against viral and phage secondary infections. CRISPR-Cas9 technology is the third generation of targeted genome editing technologies following zinc finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs). The CRISPR-Cas9 technology is now widely used in various fields.

View Article and Find Full Text PDF

Soil salinization has a serious influence on rice yield and quality. How to enhance salt tolerance in rice is a topical issue. In this study, 120 recombinant inbred line populations were generated through nonstop multi-generation selfing using a male indica rice variety Huazhan ( L.

View Article and Find Full Text PDF

Plant lesion mimics refer to necrotic spots spontaneously produced by the plant without mechanical damage, pathogen invasion, and adversity stress. Here, we isolated and characterized two rice ( L) mutants, namely, (-) and (-), which were identified from an ethyl methanesulfonate-mutagenized cultivar Xiushui 11 population. Physiological and biochemical experiments indicated that more ROS accumulated in and than in wild type.

View Article and Find Full Text PDF

Lesion mimic mutants spontaneously produce disease spots in the absence of biotic or abiotic stresses. Analyzing lesion mimic mutants' sheds light on the mechanisms underlying programmed cell death and defense-related responses in plants. Here, we isolated and characterized the rice (Oryza sativa) spotted leaf 36 (spl36) mutant, which was identified from an ethyl methanesulfonate-mutagenized japonica cultivar Yundao population.

View Article and Find Full Text PDF