Bioengineering (Basel)
January 2024
The fifth generation of cellular network (5G) can facilitate in-ambulance patient monitoring, diagnosis, and treatment by a remote specialist. However, 5G coverage and link quality can vary in time and location. The ambulance route selection can help meet the communication requirements of the in-ambulance applications.
View Article and Find Full Text PDF5G and beyond networks will transform the healthcare sector by opening possibilities for novel use cases and applications. Service level agreements (SLAs) can enable 5G-enabled medical device use cases by documenting how a medical device communication requirements are met by the unique characteristics of 5G networks and the roles and responsibilities of the stakeholders involved in offering safe and effective 5G-enabled healthcare to patients. However, there are gaps in this space that should be addressed to facilitate the efficient implementation of 5G technology in healthcare.
View Article and Find Full Text PDFFifth generation (5G) mobile communication technology can enable novel healthcare applications and augment existing ones. However, 5G-enabled healthcare applications demand diverse technical requirements for radio communication. Knowledge of these requirements is important for developers, network providers, and regulatory authorities in the healthcare sector to facilitate safe and effective healthcare.
View Article and Find Full Text PDFBackground: The inability to test at scale has become humanity's Achille's heel in the ongoing war against the COVID-19 pandemic. A scalable screening tool would be a game changer. Building on the prior work on cough-based diagnosis of respiratory diseases, we propose, develop and test an Artificial Intelligence (AI)-powered screening solution for COVID-19 infection that is deployable via a smartphone app.
View Article and Find Full Text PDF