Polymers (Basel)
February 2024
Cancer is a leading cause of death worldwide and results in nearly 10 million deaths each year. The global economic burden of cancer from 2020 to 2050 is estimated to be USD 25.2 trillion.
View Article and Find Full Text PDFProstate cancer bone metastasis is the leading cause of cancer-related mortality in men in the United States, causing severe damage to skeletal tissue. The treatment of advanced-stage prostate cancer is always challenging due to limited drug treatment options, resulting in low survival rates. There is a scarcity of knowledge regarding the mechanisms associated with the effects of biomechanical cues by the interstitial fluid flow on prostate cancer cell growth and migration.
View Article and Find Full Text PDFWe investigated the potential correlation between the fluid shear stress and the proliferation of bone prostate cancer cells on the surface of nanoclay-based scaffolds in a perfusion bioreactor. Human mesenchymal stem cells (hMSCs) were seeded on the scaffolds to initiate bone growth. After 23 days, prostate cancer cells (MDAPCa2b) were cultured on top of the osteogenically differentiated hMSCs.
View Article and Find Full Text PDFClays have been used as early as 2500 BC in human civilization for medicinal purposes. The ease of availability, biocompatibility, and versatility of these unique charged 2D structures abundantly available in nature have enabled the extensive applications of clays in human history. Recent advances in the use of clays in nanostructures and as components of polymer clay nanocomposites have exponentially expanded the use of clays in medicine.
View Article and Find Full Text PDFIn recent years, tissue engineering approaches have attracted substantial attention owing to their ability to create physiologically relevant disease models that closely mimic conditions. Here, we review nanocomposite materials and scaffolds used for the design of models of cancer, including metastatic sites. We discuss the role of material properties in modulating cellular phenotype in 3D disease models.
View Article and Find Full Text PDFBreast cancer shows a high affinity toward bone, causing bone-related complications, leading to a poor clinical prognosis. The Wnt/β-catenin signaling pathway has been well-documented for the bone regenerative process; however, the regulation of the Wnt/β-catenin pathway in breast cancer bone metastasis is poorly explored. Here, we report that the Wnt/β-catenin signaling pathway has a significant effect on osteogenesis during breast cancer bone metastasis.
View Article and Find Full Text PDFMetastatic prostate cancer spreads preferentially to the bone, causing skeletal complications associated with significant morbidity and a poor prognosis, despite current therapeutic approaches. Hence, it is imperative to understand the complex metastatic cascade to develop therapeutic interventions for treating metastatic prostate cancer. Increasing evidence suggests the synergistic role of biochemical and biophysical cues in cancer progression at metastases.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2019
Rationale: Adult hyperammonemia is most often the result of hepatic dysfunction. Hyperammonemia in the setting of normal hepatic function is a much less common phenomenon and has usually been associated with medications and certain disease states. Here, we present an unusual case of severe hyperammonemia caused physiologically by intense muscle activity in a patient lacking any evidence of liver disease.
View Article and Find Full Text PDFJanus kinase 1 and 3 are non-receptor protein tyrosine kinases, involved in the regulation of various cytokines implicated in the pathogenesis of autoimmune and inflammatory disease conditions. Thus, they serve as therapeutic targets for the designing of multi-targeted agents for the treatment of inflammatory-mediated pathological conditions. In the present study, diverse inhibitors of JAK1 and JAK3 were considered for the development of ligand-based pharmacophore models, followed by docking analysis to design putative dual inhibitors.
View Article and Find Full Text PDFJAK2 and JAK3 are non-receptor protein tyrosine kinases implicated in B-cell- and T-cell-mediated diseases. Both enzymes work via different pathways but are involved in the pathogenesis of common lymphoid-derived diseases. Hence, targeting both Janus kinases together can be a potential strategy for the treatment of these diseases.
View Article and Find Full Text PDF