In this paper, a very high sensitivity microwave-based planar microfluidic sensor is presented. Sensitivity enhancement is achieved and described theoretically and experimentally by eliminating any extra parasitic capacitance not contributing to the sensing mechanism. The sensor consists of a microstrip transmission line loaded with a series connected shunt LC resonator.
View Article and Find Full Text PDFLeidenfrost droplets can be considered as soft engines capable of directly transforming heat into mechanical energy. Despite remarkable advancements in understanding the propulsion of Leidenfrost droplets on asymmetric structures, the complex dynamics of droplets in enclosed structures is not fully understood. To address this fundamental gap, we investigated the dynamics of Leidenfrost droplets restricted by metal disks.
View Article and Find Full Text PDFHere, we demonstrate a modular, reconfigurable, and self-sufficient convective heat exchanger for regulation of temperature in microfluidic systems. The heat exchanger consists of polymer tubes wrapped around a plastic pole and fully embedded in an elastomer block, which can be easily mounted onto the microfluidic structure. It is compatible with various microfluidic geometries and materials.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.