Background: Measures of cortical topology are believed to characterize large-scale cortical networks. Previous studies used region of interest (ROI)-based approaches with predefined templates that limit analyses to linear pair-wise interactions between regions. As cortical topology is inherently complex, a non-linear dynamic model that measures the brain complexity at the voxel level is suggested to characterize topological complexities of brain regions and cortical folding.
View Article and Find Full Text PDFObjectives: In this paper, an artificial intelligence-based algorithm for predicting the optimal contrast medium dose for computed tomography (CT) angiography of the aorta is presented and evaluated in a clinical study. The prediction of the contrast dose reduction is modelled as a classification problem using the image contrast as the main feature.
Methods: This classification is performed by random decision forests (RDF) and k-nearest-neighbor methods (KNN).
This work aims to recognize the patient individual possibility of contrast dose reduction in CT angiography. This system should help to identify whether the dose of contrast agent in CT angiography can be reduced to avoid side effects. In a clinical study, 263 CT angiographies were performed and, in addition, 21 clinical parameters were recorded for each patient before contrast agent administration.
View Article and Find Full Text PDFBackground: Structural MRI studies in people with first-episode psychosis (FEP) and those in the clinical high-risk (CHR) state have consistently shown volumetric abnormalities that depict changes in the structural complexity of the cortical boundary. The aim of the present study was to employ chaos analysis in the identification of people with psychosis based on the structural complexity of the cortical boundary and subcortical areas.
Methods: We performed chaos analysis of the grey matter distribution on structural MRIs.
Background: Video-based tic detection and scoring is useful to independently and objectively assess tic frequency and severity in patients with Tourette syndrome. In trained raters, interrater reliability is good. However, video ratings are time-consuming and cumbersome, particularly in large-scale studies.
View Article and Find Full Text PDFStructural MRI studies in first-episode psychosis (FEP) and in clinical high risk (CHR) patients have consistently shown volumetric abnormalities in frontal, temporal, and cingulate cortex areas. The aim of the present study was to employ chaos analysis for the identification of brain topology differences in people with psychosis. Structural MRI were acquired from 77 FEP, 73 CHR and 44 healthy controls (HC).
View Article and Find Full Text PDFManual detection of newly formed lesions in multiple sclerosis is an important but tedious and difficult task. Several approaches for automating the detection of new lesions have recently been proposed, but they tend to either overestimate the actual amount of new lesions or to miss many lesions. In this paper, an image registration convolutional neural network (CNN) that adapts the baseline image to the follow-up image by spatial deformations and simulation of new lesions is proposed.
View Article and Find Full Text PDFThe discrimination of tumor-infiltrated tissue from non-tumorous brain tissue during neurosurgical tumor excision is a major challenge in neurosurgery. It is critical to achieve full tumor removal since it directly correlates with the survival rate of the patient. Optical coherence tomography (OCT) might be an additional imaging method in the field of neurosurgery that enables the classification of different levels of tumor infiltration and non-tumorous tissue.
View Article and Find Full Text PDFOptical coherence tomography (OCT) and fundus autofluorescence (FAF) are important imaging modalities for the assessment and prognosis of central serous chorioretinopathy (CSCR). However, setting the findings from both into spatial and temporal contexts as desirable for disease analysis remains a challenge due to both modalities being captured in different perspectives: sparse three-dimensional (3D) cross sections for OCT and two-dimensional (2D) en face images for FAF. To bridge this gap, we propose a visualisation pipeline capable of projecting OCT labels to en face image modalities such as FAF.
View Article and Find Full Text PDFStud Health Technol Inform
May 2022
The distributed nature of our digital healthcare and the rapid emergence of new data sources prevents a compelling overview and the joint use of new data. Data integration, e.g.
View Article and Find Full Text PDFIdentifying tumour infiltration zones during tumour resection in order to excise as much tumour tissue as possible without damaging healthy brain tissue is still a major challenge in neurosurgery. The detection of tumour infiltrated regions so far requires histological analysis of biopsies taken from at expected tumour boundaries. The gold standard for histological analysis is the staining of thin cut specimen and the evaluation by a neuropathologist.
View Article and Find Full Text PDFPurpose: The registration of medical images often suffers from missing correspondences due to inter-patient variations, pathologies and their progression leading to implausible deformations that cause misregistrations and might eliminate valuable information. Detecting non-corresponding regions simultaneously with the registration process helps generating better deformations and has been investigated thoroughly with classical iterative frameworks but rarely with deep learning-based methods.
Methods: We present the joint non-correspondence segmentation and image registration network (NCR-Net), a convolutional neural network (CNN) trained on a Mumford-Shah-like functional, transferring the classical approach to the field of deep learning.
Int J Comput Assist Radiol Surg
July 2022
Purpose: This work aims for a systematic comparison of popular shape and appearance models. Here, two statistical and four deep-learning-based shape and appearance models are compared and evaluated in terms of their expressiveness described by their generalization ability and specificity as well as further properties like input data format, interpretability and latent space distribution and dimension.
Methods: Classical shape models and their locality-based extension are considered next to autoencoders, variational autoencoders, diffeomorphic autoencoders and generative adversarial networks.
Comput Med Imaging Graph
December 2020
Generative adversarial networks (GANs) are currently rarely applied on 3D medical images of large size, due to their immense computational demand. The present work proposes a multi-scale patch-based GAN approach for establishing unpaired domain translation by generating 3D medical image volumes of high resolution in a memory-efficient way. The key idea to enable memory-efficient image generation is to first generate a low-resolution version of the image followed by the generation of patches of constant sizes but successively growing resolutions.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
October 2020
Purpose: Iodine-containing contrast agent (CA) used in contrast-enhanced CT angiography (CTA) can pose a health risk for patients. A system that adjusts the frequently used standard CA dose for individual patients based on their clinical parameters can be useful. As basis the quality of the image contrast in CTA volumes has to be determined, especially to recognize excessive contrast induced by CA overdosing.
View Article and Find Full Text PDFIodine-containing contrast agents (CA) are important for enhanced image contrast in CT imaging especially in CT angiography (CTA). CA however poses a risk to the patient since it can e.g.
View Article and Find Full Text PDFThe Sørensen-Dice index (SDI) is a widely used measure for evaluating medical image segmentation algorithms. It offers a standardized measure of segmentation accuracy which has proven useful. However, it offers diminishing insight when the number of objects is unknown, such as in white matter lesion segmentation of multiple sclerosis (MS) patients.
View Article and Find Full Text PDFOptical coherence tomography (OCT) enables the non-invasive acquisition of high-resolution three-dimensional cross-sectional images at micrometer scale and is mainly used in the field of ophthalmology for diagnosis as well as monitoring of eye diseases. Also in other areas, such as dermatology, OCT is already well established. Due to its non-invasive nature, OCT is also employed for research studies involving animal models.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
November 2019
Purpose: Radio-frequency ablations play an important role in the therapy of malignant liver lesions. The navigation of a needle to the lesion poses a challenge for both the trainees and intervening physicians.
Methods: This publication presents a new GPU-based, accurate method for the simulation of radio-frequency ablations for lesions at the needle tip in general and for an existing visuo-haptic 4D VR simulator.
Int J Comput Assist Radiol Surg
March 2019
Purpose: Pathology detection in medical image data is an important but a rather complicated task. In particular, the big variability of the pathologies is a challenge to automatic detection methods and even to machine learning methods. Supervised algorithms would usually learn the appearance of a single pathological structure based on a large annotated dataset.
View Article and Find Full Text PDFObjective: Intra-interventional respiratory motion estimation is becoming a vital component in modern radiation therapy delivery or high intensity focused ultrasound systems. The treatment quality could tremendously benefit from more accurate dose delivery using real-time motion tracking based on magnetic-resonance (MR) or ultrasound (US) imaging techniques. However, current practice often relies on indirect measurements of external breathing indicators, which has an inherently limited accuracy.
View Article and Find Full Text PDF