Publications by authors named "Handan Zhang"

Oral squamous cell carcinoma (OSCC) often recurs aggressively and metastasizes despite surgery and adjuvant therapy, driven by postoperative residual cancer cells near the primary tumor site. An implantable in situ vaccine hydrogel was designed to target residual OSCC cells post-tumor removal. This hydrogel serves as a reservoir for the sustained localized release of δ-aminolevulinic acid (δ-ALA), enhancing protoporphyrin IX-mediated photodynamic therapy (PDT), and a polydopamine-hyaluronic acid composite for photothermal therapy (PTT).

View Article and Find Full Text PDF

Although chemodynamic therapy (CDT) and photothermal therapy (PTT) based on a variety of nanoparticles have been developed to achieve effective anti-bacterial therapy, the limited therapeutic efficiency of CDT alone, as well as the undifferentiated damage of PTT to both bacteria and surrounding healthy tissue are still challenges for their clinical application of infected wounds treatments. In addition, during the CDT and PTT-mediated antimicrobial processes, the endogenous macrophages would be easily converted to pro-inflammatory macrophages (M1 phenotype) under local ROS and hyperthermia to promote inflammation, resulting in unexpected suppression of tissue regeneration and possible wound deterioration. To address these problems, a biodegradable sodium alginate/hyaluronic acid hydrogel loaded with functional CeO-Au nano-alloy (AO@AC) is fabricated to not only achieve precise and efficient antibacterial activity through infection-environment dependent photothermal-chemodynamic therapy but also rapidly eliminate the excess reactive oxygens (ROS) in the M1 type macrophage at the infected area to induce their polarization to M2 type for significant inhibition of inflammation and remarkable enhancement of tissue regeneration, hopefully developing an effective strategy to treat infected wound.

View Article and Find Full Text PDF

Extracellular antibiotic resistance gene (eARG) has emerged as a global crisis in recent years, yet commonly used disinfectants have proven ineffective for their elimination. Seeking to enhance the degradation efficiency of eARG, this study explored the potential of carbon nanotubes-activated persulfate (CNTs + PS) system as a novel method for eradicating eARG. Our findings demonstrated that CNTs + PS effectively disrupted the intact structure of eARG, inhibited their genetic replication and horizontal transfer capability, achieving remarkable degradation of eARG contamination.

View Article and Find Full Text PDF

Human immunodeficiency virus-1 (HIV-1) infection disrupts the homeostatic equilibrium between the host and commensal microbes. However, the dynamic changes of plasma commensal viruses and their role in HIV/simian immunodeficiency virus (SIV) pathogenesis are rarely reported. Here, we investigated the longitudinal changes of plasma virome, inflammation levels, and disease markers using an SIV-infected model.

View Article and Find Full Text PDF
Article Synopsis
  • Humin can change in a special way when there’s no light, which might help form a tiny and reactive molecule called ·OH.
  • A study found that when reduced humin interacts with oxygen, it produces about 8.61 μmol/g of ·OH, mainly due to a fatty part found in humin.
  • The research showed that humin makes more ·OH than a similar substance called humic acid and highlighted how important humin is for generating ·OH even in the dark.
View Article and Find Full Text PDF

The management of oral squamous cell carcinoma (OSCC) poses significant challenges, leading to organ impairment and ineffective treatment of deep-seated tumors, adversely affecting patient prognosis. A cascade nanoreactor that integrates photodynamic therapy (PDT) and chemodynamic therapy (CDT) for comprehensive multimodal OSCC treatment is introduced. Utilizing iron oxide and mesoporous silica, the FMMSH drug delivery system, encapsulating the photosensitizer prodrug δ-aminolevulinic acid (δ-ALA), is developed.

View Article and Find Full Text PDF

Poly (β-amino ester) (PBAE) is an exceptional non-viral vector that is widely used in gene delivery, owing to its exceptional biocompatibility, easy synthesis, and cost-effectiveness. However, it carries a high surface positive charge that may cause cytotoxicity. Therefore, hydrophilic d-α-tocopherol polyethylene glycol succinate (TPGS) was copolymerised with PBAE to increase the biocompatibility and to decrease the potential cytotoxicity of the cationic polymer-DNA plasmid polyplex nanoparticles (NPs) formed through electrostatic forces between the polymer and DNA.

View Article and Find Full Text PDF

Tumor microenvironment (TME), as the "soil" of tumor growth and metastasis, exhibits significant differences from normal physiological conditions. However, how to manipulate the distinctions to achieve the accurate therapy of primary and metastatic tumors is still a challenge. Herein, an innovative nanoreactor (AH@MBTF) is developed to utilize the apparent differences (copper concentration and HO level) between tumor cells and normal cells to eliminate primary tumor based on HO-dependent photothermal-chemodynamic therapy and suppress metastatic tumor through copper complexation.

View Article and Find Full Text PDF

Bacterial communities play an important role in maintaining the normal functioning of ecosystems; therefore, it is important to understand the effects of polycyclic aromatic hydrocarbons (PAHs) on the bacterial community. In addition, understanding the metabolic potential of bacterial communities for PAHs is important for the remediation of PAH-contaminated soils. However, the deep relationship between PAHs and bacterial community in coking plants is not clear.

View Article and Find Full Text PDF

Background And Aims: The study established and compared the efficacy of the clinicoradiological model, radiomics model and clinicoradiological-radiomics hybrid model in predicting the microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using gadolinium ethoxybenzyl diethylene triaminepentaacetic acid (Gd-EOB-DTPA) enhanced MRI.

Methods: This was a study that enrolled 602 HCC patients from two institutions. Least absolute shrinkage and selection operator (Lasso) method was used to screen for the most important clinicoradiological and radiomics features that predict MVI pre-operatively.

View Article and Find Full Text PDF

The global increase in drought frequency and intensity in large areas has potentially important effects on soil seed banks (SSBs). However, a systematic evaluation of the impact of drought on SSBs at a global scale has not yet been well understood. We evaluated the effects of drought on SSBs and identified the association key drivers in the current meta-analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed zinc-peroxide nanoparticles coated with lipids and loaded with indocyanine green (ICG) to improve photodynamic therapy (PDT) in hypoxic tumors.
  • The nanoparticles respond to near-infrared light (808 nm) by generating heat, which releases ZnO and induces tumor cell death.
  • By producing oxygen in the tumor microenvironment, these nanoparticles enhance the effectiveness of PDT and help suppress tumor growth.
View Article and Find Full Text PDF

As particulate matter and heavy metals in the atmosphere affect the atmospheric quality, they pose a threat to human health through the respiratory system. Vegetation can remove airborne particles and purify the atmosphere. Plant leaves are capable of effectively absorbing heavy metals contained by particulates.

View Article and Find Full Text PDF

Objective: To predict preoperative microvascular invasion (MVI) risk grade by analyzing the radiomics signatures of tumors and peritumors on enhanced magnetic resonance imaging (MRI) images of hepatocellular carcinoma (HCC).

Methods: A total of 501 HCC patients (training cohort n = 402, testing cohort n = 99) who underwent preoperative Gd-EOB-DTPA-enhanced MRI and curative liver resection within a month were studied retrospectively. Radiomics signatures were selected using the least absolute shrinkage and selection operator (Lasso) algorithm.

View Article and Find Full Text PDF

To quantitate the degradation rate of 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[g]-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) under field conditions, a level III fugacity model combined with a least-squares method was used to determine the degradation rate of HHCB and AHTN in the North Canal River watershed of Beijing, China. Model fitting, validation, sensitivity, and uncertainty analyses revealed that the established model was stable and robust. The degradation rates of HHCB and AHTN were 4.

View Article and Find Full Text PDF

Although spermatogenic dysfunction is widely found in patients with human immunodeficiency virus (HIV), the underlying reasons remain unclear. Thus far, potential hypotheses involving viral reservoirs, testicular inflammation, hormone imbalance, and cachexia show inconsistent correlation with spermatogenic dysfunction. Here, northern pig-tailed macaques (NPMs) exhibited marked spermatogenic dysfunction after long-term infection with simian immunodeficiency virus (SIVmac239), with significant decreases in Johnsen scores, differentiated spermatogonial stem cells, and testicular proliferating cells.

View Article and Find Full Text PDF

Existing general analysis methods using fluorescence spectra in wavelength units make it difficult to determine the internal molecular properties of contaminants owing to the neglect of the actual physical meanings of spectral data. In this study, the relationships between spectral data and internal molecular properties were studied, and a corresponding transform method was proposed. A series of transforms were conducted on three-dimensional fluorescence spectra for increased relevance to energy level transition; the horizontal and vertical coordinates represented the Stokes shift and absorptive energy in transition, respectively.

View Article and Find Full Text PDF

The goal of this study was to identify antibiotics with potential risk in river water of the megacity Beijing, China. This was accomplished by using a tiered approach that combined hazard (phase I) and monitoring-based risk (phase II) assessment. Ninety-five candidate antibiotics were screened and 31 was identified as hazardous during phase I assessment.

View Article and Find Full Text PDF

The role of vapor- and liquid-phase AsO in deactivating commercial VO-WO/TiO catalyst during the NH-selective catalytic reduction (SCR) process was explored and compared. AsO was loaded via vapor deposition (As(vap)) and the wet impregnation (As(imp)) method, respectively. Results demonstrated that the poisoning extent of vapor arsenic was much stronger than in the liquid state.

View Article and Find Full Text PDF

Properly disposing of unused pharmaceuticals is essential to minimize emissions of active pharmaceutical ingredients (APIs). The aim of this study was to determine whether disposing of unused pharmaceuticals in household solid waste is a cost-effective way of attenuating pharmaceutical emissions. We calculated attenuation rates (ARs) for unused pharmaceuticals by performing mass balance calculations for disposal to landfill.

View Article and Find Full Text PDF

Two typical polycyclic musks (PCMs), namely 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), were determined in 63 surface water and 42 sediment samples collected from the North Canal River watershed, an urban catchment located in the megacity Beijing, China. Concentrations of HHCB and AHTN were 13.2 ng/L-395 ng/L and 2.

View Article and Find Full Text PDF

The pollution of pharmaceuticals has attracted a lot of concerns during recent years. The goal of this study was to identify targets of ecological concern considering human use pharmaceuticals marketed in China. We constructed a database for 593 active pharmaceutical ingredients (APIs) by collecting their information on use and emission (e.

View Article and Find Full Text PDF

Nitrate pollution is a global environmental issue. Forests play an important role in altering hydrological processes and purifying water pollutants in rainfall and runoff. The quantitative identification of nitrate concentration and sources in surface runoff is of great significance for watershed management and water environment improvement.

View Article and Find Full Text PDF

Microbial translocation is a cause of systemic immune activation in HIV/SIV infection. In the present study, we found a lower CD8 T cell activation level in (northern pig-tailed macaques, NPMs) than in (Chinese rhesus macaques, ChRMs) during SIVmac239 infection. Furthermore, the levels of plasma LPS-binding protein and soluble CD14 in NPMs were lower than those in ChRMs.

View Article and Find Full Text PDF

HIV infection induces pathological changes in the intestinal mucosa. Here, a successful endoscopy was performed on the colon of a Chinese rhesus macaque by using Olympus CV170 gastroscope. The stability on postoperative recovery and the integrity of biopsy tissue implied a possibility of achieving AIDS longitudinal intestinal research on macaques.

View Article and Find Full Text PDF