Publications by authors named "Hanchuan Peng"

We conducted a large-scale whole-brain morphometry study by analyzing 3.7 peta-voxels of mouse brain images at the single-cell resolution, producing one of the largest multi-morphometry databases of mammalian brains to date. We registered 204 mouse brains of three major imaging modalities to the Allen Common Coordinate Framework (CCF) atlas, annotated 182,497 neuronal cell bodies, modeled 15,441 dendritic microenvironments, characterized the full morphology of 1876 neurons along with their axonal motifs, and detected 2.

View Article and Find Full Text PDF

Digital reconstruction of the intricate 3D morphology of individual neurons from microscopic images is a crucial challenge in both individual laboratories and large-scale projects focusing on cell types and brain anatomy. This task often fails in both conventional manual reconstruction and state-of-the-art artificial intelligence (AI)-based automatic reconstruction algorithms. It is also challenging to organize multiple neuroanatomists to generate and cross-validate biologically relevant and mutually agreed upon reconstructions in large-scale data production.

View Article and Find Full Text PDF

Motivation: Accurate segmentation and recognition of C.elegans cells are critical for various biological studies, including gene expression, cell lineages, and cell fates analysis at single-cell level. However, the highly dense distribution, similar shapes, and inhomogeneous intensity profiles of whole-body cells in 3D fluorescence microscopy images make automatic cell segmentation and recognition a challenging task.

View Article and Find Full Text PDF

We examined the distribution of pre-synaptic contacts in axons of mouse neurons and constructed whole-brain single-cell neuronal networks using an extensive dataset of 1,891 fully reconstructed neurons. We found that bouton locations were not homogeneous throughout the axon and among brain regions. As our algorithm was able to generate whole-brain single-cell connectivity matrices from full morphology reconstruction datasets, we further found that non-homogeneous bouton locations have a significant impact on network wiring, including degree distribution, triad census, and community structure.

View Article and Find Full Text PDF

The full morphology of single neurons is indispensable for understanding cell types, the basic building blocks in brains. Projecting trajectories are critical to extracting biologically relevant information from neuron morphologies, as they provide valuable information for both connectivity and cell identity. We developed an artificial intelligence method, deep sequential model (DSM), to extract concise, cell-type-defining features from projections across brain regions.

View Article and Find Full Text PDF

Achieving uniform optical resolution for a large tissue sample is a major challenge for deep imaging. For conventional tissue clearing methods, loss of resolution and quality in deep regions is inevitable due to limited transparency. Here we describe the Transparent Embedding Solvent System (TESOS) method, which combines tissue clearing, transparent embedding, sectioning and block-face imaging.

View Article and Find Full Text PDF

Quantifying neuron morphology and distribution at the whole-brain scale is essential to understand the structure and diversity of cell types. It is exceedingly challenging to reuse recent technologies of single-cell labeling and whole-brain imaging to study human brains. We propose adaptive cell tomography (ACTomography), a low-cost, high-throughput, and high-efficacy tomography approach, based on adaptive targeting of individual cells.

View Article and Find Full Text PDF

Digital health technologies have been in use for many years in a wide spectrum of healthcare scenarios. This narrative review outlines the current use and the future strategies and significance of digital health technologies in modern healthcare applications. It covers the current state of the scientific field (delineating major strengths, limitations, and applications) and envisions the future impact of relevant emerging key technologies.

View Article and Find Full Text PDF

We conducted a large-scale study of whole-brain morphometry, analyzing 3.7 peta-voxels of mouse brain images at the single-cell resolution, producing one of the largest multi-morphometry databases of mammalian brains to date. We spatially registered 205 mouse brains and associated data from six Brain Initiative Cell Census Network (BICCN) data sources covering three major imaging modalities from five collaborative projects to the Allen Common Coordinate Framework (CCF) atlas, annotated 3D locations of cell bodies of 227,581 neurons, modeled 15,441 dendritic microenvironments, characterized the full morphology of 1,891 neurons along with their axonal motifs, and detected 2.

View Article and Find Full Text PDF

Classifications of single neurons at brain-wide scale is a powerful way to characterize the structural and functional organization of a brain. We acquired and standardized a large morphology database of 20,158 mouse neurons, and generated a whole-brain scale potential connectivity map of single neurons based on their dendritic and axonal arbors. With such an anatomy-morphology-connectivity mapping, we defined neuron connectivity types and subtypes (both called "c-types" for simplicity) for neurons in 31 brain regions.

View Article and Find Full Text PDF

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization.

View Article and Find Full Text PDF

Background: Neuron morphology analysis is an essential component of neuron cell-type definition. Morphology reconstruction represents a bottleneck in high-throughput morphology analysis workflow, and erroneous extra reconstruction owing to noise and entanglements in dense neuron regions restricts the usability of automated reconstruction results. We propose SNAP, a structure-based neuron morphology reconstruction pruning pipeline, to improve the usability of results by reducing erroneous extra reconstruction and splitting entangled neurons.

View Article and Find Full Text PDF

Brain research is an area of research characterized by its cutting-edge nature, with brain mapping constituting a crucial aspect of this field. As sequencing tools have played a crucial role in gene sequencing, brain mapping largely depends on automated, high-throughput and high-resolution imaging techniques. Over the years, the demand for high-throughput imaging has scaled exponentially with the rapid development of microscopic brain mapping.

View Article and Find Full Text PDF

BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms.

View Article and Find Full Text PDF

Motivation: Precise reconstruction of neuronal arbors is important for circuitry mapping. Many auto-tracing algorithms have been developed toward full reconstruction. However, it is still challenging to trace the weak signals of neurite fibers that often correspond to axons.

View Article and Find Full Text PDF

Summary: Recent whole-brain mapping projects are collecting increasingly larger sets of high-resolution brain images using a variety of imaging, labeling and sample preparation techniques. Both mining and analysis of these data require reliable and robust cross-modal registration tools. We recently developed the mBrainAligner, a pipeline for performing cross-modal registration of the whole mouse brain.

View Article and Find Full Text PDF

A deep understanding of the neuronal connectivity and networks with detailed cell typing across brain regions is necessary to unravel the mechanisms behind the emotional and memorial functions as well as to find the treatment of brain impairment. Brain-wide imaging with single-cell resolution provides unique advantages to access morphological features of a neuron and to investigate the connectivity of neuron networks, which has led to exciting discoveries over the past years based on animal models, such as rodents. Nonetheless, high-throughput systems are in urgent demand to support studies of neural morphologies at larger scale and more detailed level, as well as to enable research on non-human primates (NHP) and human brains.

View Article and Find Full Text PDF

Recent advances in brain imaging allow producing large amounts of 3-D volumetric data from which morphometry data is reconstructed and measured. Fine detailed structural morphometry of individual neurons, including somata, dendrites, axons, and synaptic connectivity based on digitally reconstructed neurons, is essential for cataloging neuron types and their connectivity. To produce quality morphometry at large scale, it is highly desirable but extremely challenging to efficiently handle petabyte-scale high-resolution whole brain imaging database.

View Article and Find Full Text PDF

Recent whole-brain mapping projects are collecting large-scale three-dimensional images using modalities such as serial two-photon tomography, fluorescence micro-optical sectioning tomography, light-sheet fluorescence microscopy, volumetric imaging with synchronous on-the-fly scan and readout or magnetic resonance imaging. Registration of these multi-dimensional whole-brain images onto a standard atlas is essential for characterizing neuron types and constructing brain wiring diagrams. However, cross-modal image registration is challenging due to intrinsic variations of brain anatomy and artifacts resulting from different sample preparation methods and imaging modalities.

View Article and Find Full Text PDF

Whole-brain imaging has become an increasingly important approach to investigate neural structures, such as somata distribution, dendritic morphology, and axonal projection patterns. Different structures require whole-brain imaging at different resolutions. Thus, it is highly desirable to perform whole-brain imaging at multiple scales.

View Article and Find Full Text PDF

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice.

View Article and Find Full Text PDF

An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization.

View Article and Find Full Text PDF

The neocortex is disproportionately expanded in human compared with mouse, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues.

View Article and Find Full Text PDF