Publications by authors named "Hanbauer I"

Reelin is an extracellular matrix protein synthesized in cerebellar granule cells that plays an important role in Purkinje cell positioning during cerebellar development and in modulating adult synaptic function. In the cerebellum of schizophrenia (SZ) and bipolar (BP) disorder patients, there is a marked decrease ( approximately 50%) of reelin expression. In this study we measured Purkinje neuron density in the Purkinje cell layer of cerebella of 13 SZ and 17 BP disorder patients from the McLean 66 Cohort Collection, Harvard Brain Tissue Resource Center.

View Article and Find Full Text PDF
Article Synopsis
  • Mice fed a diet low in n-3 fatty acids and high in n-6 fatty acids gained significantly more weight over three generations compared to those on a standard diet.
  • This dietary change led to increased adipogenesis and a notable upregulation of stearyl-coenzyme A desaturase 1 (Scd1), which is linked to higher plasma triglyceride levels.
  • Additionally, the low n-3 fatty acid diet decreased beneficial fatty acids in the liver while increasing harmful ones like arachidonic acid, resulting in obesity and negative effects on organ health such as liver steatosis and hypertrophy of the heart and kidneys.
View Article and Find Full Text PDF

Previously we have shown that the binding complex formation of methionine sulfoxide reductase A (msrA) promoter and calcium phospholipid binding protein (CPBP) enhances msrA transcription and expression. The msrA promoter-CPBP-binding complex (PmsrA-CPBP) formation was similar in Deltatrx1, Deltatrx2, and Deltatrx3 yeast strains and their control, with or without exposure to H(2)O(2). In Deltatrx1/Deltatrx2 double mutant the PmsrA-CPBP was similar to its parent strain, following exposure to H(2)O(2) for 30 min.

View Article and Find Full Text PDF

Methionine sulfoxide reductase A (MsrA) maintains the function of many proteins by reversing oxidation of methionine residues. Lack of this repair mechanism very likely increases aging-related disease susceptibility. In Saccharomyces cerevisiae, disruption of the msrA gene increases free and protein-bound methionine sulfoxide and decreases cell viability.

View Article and Find Full Text PDF

E14 mesencephalic cultures grown 6 days in Neurobasal Medium containing 10% horse serum consist of differentiated neurons and astroglia. In these cultures, glutathione and metallothionein-I/II are enriched in astrocytes and play an important role in heavy metal scavenging and oxidative stress response. A 24 h exposure to 25 micro M Pb, in serum-containing medium, elevated the glutathione content by more than twofold and increased the metallothionein I/II-immunolabeled protein band.

View Article and Find Full Text PDF

In the trisomy 16 mouse the increased gene dosage of SOD-1 increases H2O2 production that results in increased oxidative stress. We report here that in hippocampal primary cultures, metallothionein (MT)-I/II immunoreactivity was present mainly in glial fibrillary acidic protein-immunolabeled cells. Western blot analysis showed a two-fold higher level of MT-I/II in trisomy 16 mice then in euploid littermates.

View Article and Find Full Text PDF

Pb was shown to perturb neuronal and glial function either directly by interacting with protein thiol groups or indirectly by mimicking Ca(2+) and increasing oxidative stress. In view of the potential action of Pb on cellular redox homeostasis we studied the regulation of activator protein-1 (AP-1) DNA binding. A 1h incubation of astrocyte primary cultures with 10 microM Pb caused a 2.

View Article and Find Full Text PDF

In astrocyte primary cultures of trisomy 16 mice, an animal model for Down's syndrome, protein oxidation was 50% higher than in diploid littermates. Exposure to 10 microM H2O2 or 50 microM kainic acid incremented protein oxidation in trisomic but not in diploid cultures. Studies on stress response genes showed that metallothionein (MT) level was 2-3 times higher in trisomy 16 than in diploid cultures.

View Article and Find Full Text PDF

The effect of H(2)O(2) on DNA binding activity of activator protein-1 (AP-1) was studied by electrophoretic mobility shift assay (EMSA) in cortical primary cultures of trisomy-16 mice and their diploid littermates. Exposure to 10 microM H(2)O(2) for 15 min elicited a greater and earlier occurring increase of AP-1 DNA binding in neuronal primary cultures of trisomy-16 mice than of diploid mice. When astrocyte-rich primary cultures were exposed to 10 microM H(2)O(2) a two-fold increase of AP-1 DNA binding activity was found in trisomy-16 and diploid mice.

View Article and Find Full Text PDF

We investigated the effects of nitric oxide on an in vitro and in vivo generation of hydroxyl radicals, and in vivo neurotoxicity caused by intranigral infusion of ferrous citrate in rats. The formation of hydroxyl radicals in vitro, without exogenous hydrogen peroxide, was dose-dependent. Some nitric oxide donors (e.

View Article and Find Full Text PDF

Several lines of evidence indicated that Pb exposure in vivo and in vitro altered neurite morphology in central and peripheral neurons. The present report shows that neurite length in mesencephalic primary cultures, consisting of neurons and glia, was decreased by Pb exposure when serum factors, presumably essential for glial functions, were absent in the culture medium. We studied whether a serum factor might control the mechanisms involved in the uptake and accumulation of Pb and its effect on cytoskeleton proteins.

View Article and Find Full Text PDF

To assess whether a defective oxidative defense may contribute to Down's syndrome, we studied the regulation of the metallothionein(MT)-I/II isoforms in primary cultures of cerebral cortex from fetal trisomy 16 mice and their euploid littermates. Western blot analysis showed that MT-I/II was upregulated and the protein carbonyl content was higher in trisomy 16 compared with euploid cultures. Addition of N-acetyl-l-cysteine to the culture medium reduced the increment of MT-I/II in trisomy 16 cortical cells.

View Article and Find Full Text PDF

This article provides basic guidelines for a rapid analysis of subpopulation proportions and neurite morphology in primary cultures. We describe, in E14 mesencephalic primary cultures, an immunohistochemical method for the simultaneous identification of multiple neuronal phenotypes and an estimation of the ratio of subpopulations. In addition, we describe the use of the Renaissance TSA-Direct kit (NEN, DuPont) to enhance the visualization of neurites when the antigen is in low abundance.

View Article and Find Full Text PDF

The effect of Pb2+ was studied in embryonic mesencephalic primary cultures that contain neurons and glia. Pb2+ exposure in absence of serum, damaged more efficaciously the cultured cells than Pb2+ exposure in presence of serum. In serum-free medium, Pb2+ elicited mainly necrosis and apoptosis in maximally 13% of the cells in culture.

View Article and Find Full Text PDF

Under aerobic conditions the addition of (C2N5)2N(N[O]NO)-.Na+(DEA/NO), S-nitroso-N-acetyl penicillamine and nitric oxide (NO)-saturated buffer, but not S-nitroso-L-glutathione, to dopamine solutions resulted in dopamine o-semiquinone formation that was dependent on the formation of a NO/oxygen intermediate. High pressure liquid chromatography (HPLC) electrochemical analysis of dopamine demonstrated that the DEA/NO-induced oxidation of dopamine was abrogated in the presence of the antioxidants, ascorbate and glutathione.

View Article and Find Full Text PDF

In mesencephalic primary cultures derived from E14 rat embryos, calretinin- and tyrosine hydroxylase-immunoreactive neurons comprised 2% and 5% of the total cell population, respectively, at 6-7 days in vitro. The number of calretinin-immunoreactive neurons was unchanged after a 12- or 24-h exposure to 500 microM kainic acid (KA), but a 50% cell loss was detected after a 48-h exposure to KA. Tyrosine hydroxylase-immunoreactive neurons demonstrated a 50% and 67% cell loss at 24- and 48-h exposures to 500 microM KA.

View Article and Find Full Text PDF

Ventral mesencephalic neurons contained only low-affinity and sodium-independent binding sites of [3H]WIN 35,428 (marker of dopamine transporter) during the first 10 d in primary cultures. These sites were present in cytosol, and they are not very probably related to dopamine transporter. After 12 d in culture, membrane-bound, high-affinity, and sodium-dependent [3H]WIN 35,428 binding sites were detected.

View Article and Find Full Text PDF

Endogenously formed nitric oxide (NO) possesses diverse properties such as regulating physiological functions, exerting specific toxic effects, and protecting against various toxic substances. Recent studies suggest that in the presence of reactive oxygen species, NO can serve as an antioxidant. We show here that NO delivered from the NO donor compound, PAPA/NO (NH2(C3H6)(N[N(O)NO](C3H7)), protects Chinese hamster V79 lung fibroblasts from the cytotoxicity of t-butyl hydroperoxide and cumene hydroperoxide.

View Article and Find Full Text PDF

The critical regulatory function of nitric oxide (NO) in many physiologic processes is well established. However, in an aerobic aqueous environment NO is known to generate one or more reactive and potentially toxic nitrogen oxide (NOx) metabolites. This has led to the speculation that mechanisms must exist in vivo by which these reactive intermediates are detoxified, although the nature of these mechanisms has yet to be elucidated.

View Article and Find Full Text PDF

The effect of the ionotropic glutamate receptor agonist, AMPA, on intracellular Ca2+ concentrations ([Ca2+]i) was studied in dopaminergic neurons present in primary cultures of ventral tegmental mesencephalon of 14 day rat embryos. Exposure of cells to 10 microM AMPA for 1 min increased [Ca2+]i by 2-3 fold in dopaminergic and other neurons and this response was obliterated within 5 min by superfusion with AMPA-free incubation buffer. In dopaminergic neurons, 1 min or 5 min exposure to 50 microM AMPA increased [Ca2+]i 3 to 5 times over control values.

View Article and Find Full Text PDF

Nitric oxide, NO, which is generated by various components of the immune system, has been presumed to be cytotoxic. However, NO has been proposed to be protective against cellular damage resulting during ischemia reperfusion. Along with NO there is often concomitant formation of superoxide/hydrogen peroxide, and hence a synergistic relationship between the cytotoxic effects of nitric oxide and these active oxygen species is frequently assumed.

View Article and Find Full Text PDF