In photosynthetic water oxidation, two water molecules are converted into one oxygen molecule and four protons at the MnCaO cluster in photosystem II (PSII) via the S-state cycle. Efficient proton exit from the catalytic site to the lumen is essential for this process. However, the exit pathways of individual protons through the PSII proteins remain to be identified.
View Article and Find Full Text PDFThe special-pair chlorophyll (Chl) P680 in photosystem II has an extremely high redox potential ( ) to enable water oxidation in photosynthesis. Significant positive-charge localization on one of the Chl constituents, P or P, in P680 has been proposed to contribute to this high To identify the Chl molecule on which the charge is mainly localized, we genetically introduced a hydrogen bond to the 13-keto C=O group of P and P by changing the nearby D1-Val-157 and D2-Val-156 residues to His, respectively. Successful hydrogen bond formation at P and P in the obtained D1-V157H and D2-V156H mutants, respectively, was monitored by detecting 13-keto C=O vibrations in Fourier transfer infrared (FTIR) difference spectra upon oxidation of P680 and the symmetrically located redox-active tyrosines Y and Y, and they were simulated by quantum-chemical calculations.
View Article and Find Full Text PDFPlant circadian clock generates rhythms with a period close to 24 h, and it controls a wide variety of physiological and developmental events, including the transition to reproductive growth (or flowering). During the last decade, significant research progress in Arabidopsis thaliana has been made in defining the molecular mechanism by which the circadian clock regulates flowering time in response to changes in photoperiod. In Lotus japonicus, we have found that LjFTa, which encodes a ortholog of the Arabidopsis FLOWERING LOCUS T (FT), plays an important role in the promotion of flowering, but it is not clear how the expression of LjFTa is regulated in L.
View Article and Find Full Text PDFThioredoxin (Trx) is a key player in redox homeostasis in various cells, modulating the functions of target proteins by catalyzing a thiol-disulfide exchange reaction. Target proteins of cytosolic Trx-h of higher plants were studied, particularly in the plasma membrane, because plant plasma membranes include various functionally important protein molecules such as transporters and signal receptors. Plasma membrane proteins from Arabidopsis thaliana cell cultures were screened using a resin Trx-h1 mutant-immobilized, and a total of 48 candidate proteins obtained.
View Article and Find Full Text PDFDuring the last decade, significant research progress in the study of Arabidopsis thaliana has been made in defining the molecular mechanism by which the plant circadian clock regulates flowering time in response to changes in photoperiod. It is generally accepted that the clock-controlled CONSTANS (CO)-FLOWERING LOCUS T (FT)-mediated external coincidence mechanism underlying the photoperiodic control of flowering time is conserved in higher plants, including A. thaliana and Oryza sativa.
View Article and Find Full Text PDFMolybdenum (Mo) is an essential trace element for almost all living organisms including animals. Mo is used as a catalytic center of molybdo-enzymes for oxidation/reduction reactions of carbon, nitrogen, and sulfur metabolism. Whilst living cells are known to import inorganic molybdate oxyanion from the surrounding environment, the in vivo dynamics of cytosolic molybdate remain poorly understood as no appropriate indicator is available for this trace anion.
View Article and Find Full Text PDFRecent intensive studies of the model plant Arabidopsis thaliana have revealed the molecular mechanisms underlying circadian rhythms in detail. Results of phylogenetic analyses indicated that some of core clock genes are widely conserved throughout the plant kingdom. For another model plant the legume Lotus japonicus, we have reported that it has a set of putative clock genes highly homologous to A.
View Article and Find Full Text PDFThiol modulation of the chloroplast ATP synthase γ subunit has been recognized as an important regulatory system for the activation of ATP hydrolysis activity, although the physiological significance of this regulation system remains poorly characterized. Since the membrane potential required by this enzyme to initiate ATP synthesis for the reduced enzyme is lower than that needed for the oxidized form, reduction of this enzyme was interpreted as effective regulation for efficient photophosphorylation. However, no concrete evidence has been obtained to date relating to the timing and mode of chloroplast ATP synthase reduction and oxidation in green plants.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
March 2012
Sessile plants must continuously adjust their growth and development to optimize photosynthetic activity under ever-fluctuating light conditions. Among such light responses in plants, one of the best-characterized events is the so-called shade avoidance, for which a low ratio of the red (R):far-red (FR) light intensities is the most prominent stimulus. Such shade avoidance responses enable plants to overtop their neighbors, thereby enhancing fitness and competitiveness in their natural habitat.
View Article and Find Full Text PDFThe chloroplast-type F(1) ATPase is the key enzyme of energy conversion in chloroplasts, and is regulated by the endogenous inhibitor epsilon, tightly bound ADP, the membrane potential and the redox state of the gamma subunit. In order to understand the molecular mechanism of epsilon inhibition, we constructed an expression system for the alpha(3)beta(3)gamma subcomplex in thermophilic cyanobacteria allowing thorough investigation of epsilon inhibition. epsilon Inhibition was found to be ATP-independent, and different to that observed for bacterial F(1)-ATPase.
View Article and Find Full Text PDFThioredoxins are a ubiquitous family of redox equivalent mediators, long considered to possess a limited number of target enzymes. Recent progress in proteomic research has allowed the identification of a wide variety of candidate proteins with which this small protein may interact in vivo. Moreover, the activity of thioredoxin itself has been recently found to be subject to regulation by posttranslational modifications, adding an additional level of complexity to the function of this intriguing enzyme family.
View Article and Find Full Text PDFIn F1-ATPase, the rotation of the central axis subunit gamma relative to the surrounding alpha3beta3 subunits is coupled to ATP hydrolysis. We previously reported that the introduced regulatory region of the gamma subunit of chloroplast F1-ATPase can modulate rotation of the gamma subunit of the thermophilic bacterial F1-ATPase (Bald, D., Noji, H.
View Article and Find Full Text PDFChloroplast cyclophilin has been identified as a potential candidate of enzymes in chloroplasts that are regulated by thioredoxin (Motohashi, K., Kondoh, A., Stumpp, M.
View Article and Find Full Text PDFChloroplast ATP synthase synthesizes ATP by utilizing a proton gradient as an energy supply, which is generated by photosynthetic electron transport. The activity of the chloroplast ATP synthase is regulated in several specific ways to avoid futile hydrolysis of ATP under various physiological conditions. Several regulatory signals such as Delta mu H(+), tight binding of ADP and its release, thiol modulation, and inhibition by the intrinsic inhibitory subunit epsilon are sensed by this complex.
View Article and Find Full Text PDFThe regulation of intracellular Ca(2+) levels is achieved in part by high-capacity vacuolar Ca(2+)/H(+) antiporters. An N-terminal regulatory region (NRR) on the Arabidopsis Ca(2+)/H(+) antiporter CAX1 (cation exchanger 1) has been shown previously to regulate Ca(2+) transport by a mechanism of N-terminal auto-inhibition. Here, we examine the regulation of other CAX transporters, both within Arabidopsis and from another plant, mung bean (Vigna radiata), to ascertain if this mechanism is commonly used among Ca(2+)/H(+) antiporters.
View Article and Find Full Text PDFTanpakushitsu Kakusan Koso
September 2002