Background: Growth factor Midkine (MK), which expresses on endothelial cells and renal proximal tubules, has been implicated in inflammation-related kidney diseases such as ischemic reperfusion-induced tubulointerstitial injury and diabetic nephropathy. The biological actions of MK are elicited through its chemotactic activity and chemokine-driven inflammatory pathway. Post-infectious glomerulonephritis is caused by the deposition of immune complexes into glomeruli by infiltrating a number of inflammatory cells.
View Article and Find Full Text PDFL-selectin initiates lymphocyte interactions with high endothelial venules (HEVs) of lymphoid organs through binding to ligands with specific glycosylation modifications. 6-Sulfo sLe(x), a sulfated carbohydrate determinant for L-selectin, is carried on core 2 and extended core 1 O-glycans of HEV-expressed glycoproteins. The MECA-79 monoclonal antibody recognizes sulfated extended core 1 O-glycans and partially blocks lymphocyte-HEV interactions in lymphoid organs.
View Article and Find Full Text PDFIn this issue of Blood, Hernandez Mir and colleagues provide the most detailed analysis to date of the glycans on an HEV-expressed ligand (CD34) isolated from a human lymphoid organ, (tonsils), adding to our understanding of how L-selectin mediates lymphocyte homing.
View Article and Find Full Text PDFThe concept that inflammation plays a crucial role in the pathogenesis of diabetic nephropathy has been recently emerging, although the principal pathology of diabetic nephropathy comprises glomerular sclerosis and associated changes in nephrons. Here, we identified the growth factor midkine (MK) as a novel key molecule involved in inflammation associated with Streptozotocin-induced diabetic nephropathy. The tubulointerstitial damage, as assessed as morphological changes, osteopontin expression, collagen I deposition and macrophage infiltration, were strikingly less in MK-deficient (Mdk(-/-)) mice than in Mdk(+/+) mice.
View Article and Find Full Text PDF