Publications by authors named "Hanauske-Abel H"

Nonsense-mediated mRNA decay (NMD) couples protein synthesis to mRNA turnover. It eliminates defective transcripts and controls the abundance of certain normal mRNAs. Our study establishes a connection between NMD and the translation factor eIF5A (eukaryotic initiation factor 5A) in human cells.

View Article and Find Full Text PDF

Unlabelled: Antiretrovirals suppress HIV-1 production yet spare the sites of HIV-1 production, the HIV-1 DNA-harboring cells that evade immune detection and enable viral resistance on-drug and viral rebound off-drug. Therapeutic ablation of pathogenic cells markedly improves the outcome of many diseases. We extend this strategy to HIV-1 infection.

View Article and Find Full Text PDF

Cancer etiology is influenced by alterations in protein synthesis that are not fully understood. In this study, we took a novel approach to investigate the role of the eukaryotic translation initiation factor eIF5A in human cervical cancers, where it is widely overexpressed. eIF5A contains the distinctive amino acid hypusine, which is formed by a posttranslational modification event requiring deoxyhypusine hydroxylase (DOHH), an enzyme that can be inhibited by the drugs ciclopirox and deferiprone.

View Article and Find Full Text PDF

HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates.

View Article and Find Full Text PDF

Background: Eukaryotic translation initiation factor eIF5A has been implicated in HIV-1 replication. This protein contains the apparently unique amino acid hypusine that is formed by the post-translational modification of a lysine residue catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase (DOHH). DOHH activity is inhibited by two clinically used drugs, the topical fungicide ciclopirox and the systemic medicinal iron chelator deferiprone.

View Article and Find Full Text PDF

Purpose: Enzastaurin (LY317615) is a novel serine/threonine kinase inhibitor, targeting Protein Kinase C-beta (PKC-beta), and PI3K/AKT pathways to inhibit angiogenesis and tumor cell proliferation. The aims of this study were to determine whether Enzastaurin has direct antitumor activity against freshly explanted tumor cells and to correlate mRNA expression of genes related to the proposed mechanism of action of enzastaurin with in vitro chemosensitivity.

Experimental Design: Freshly biopsied tumor cells were studied using soft-agar cell cloning experiments (SACCE) to determine the in vitro chemosensitivity to enzastaurin.

View Article and Find Full Text PDF

Aim Of The Study: mRNA expression of genes involved in the mechanism of action of pemetrexed was correlated with in vitro chemosensitivity of freshly explanted human tumor specimens.

Experimental Design: Chemosensitivity to pemetrexed was studied in soft-agar. Multiplex rtPCR experiments for reduced folate carrier (RFC), folate receptor-alpha (FR-alpha), folylpolyglutamate synthetase (FPGS), thymidylate synthase (TS), dihydrofolate reductase (DHFR), glycinamide ribonucleotide formyl transferase (GARFT), mrp4, and mrp5 were performed in parallel.

View Article and Find Full Text PDF

Enzastaurin (LY317615.HCl) is an antiproliferative agent targeted specifically against PKC-beta. We have investigated the antitumoral effects of Enzastaurin against human cancer cell lines and freshly explanted human tumor tissue.

View Article and Find Full Text PDF

Objective: The mature eukaryotic translation initiation factor 5A contains the unusual amino acid hypusine, formed post-translationally from a specific lysine residue and essential for proliferation of eukaryotic cells. We hypothesized that the major eIF5A isoform, eIF5A-1, is an in situ biomarker for proliferation. NIH-353, a polyclonal immunoreagent specific for hypusine-containing eIF5A-1, was used to test this proposal in biopsies of vulvar high-grade intraepithelial neoplasia (VIN), characterized by the presence of proliferating cells throughout the thickness of the epithelium.

View Article and Find Full Text PDF

'Iron chelation' is widely understood as synonymous with non-specificity and viewed as a purely physicochemical mode of action, without any defined biomolecular target, broadly interfering with metalloenzymes. The 2-oxoacid-utilizing dioxygenases challenge this preconception. A family of non-heme iron enzymes that rely on chelation-dependent catalysis, they employ common molecules like Krebs cycle intermediates as endogenous iron chelators and consume atmospheric oxygen, inserting one of its atoms into cellular components.

View Article and Find Full Text PDF

Objective: Matrix formation is a hallmark of solid tumor biology. Circulating antigens of structural matrix proteins should reflect this fact, yet are subject to systemic variables. We propose that if measured regionally, in a cancer-induced extravascular fluid pool such as malignant ascites of ovarian cancer, the same antigens retain their conceptual advantage as surrogate markers for tumor biology.

View Article and Find Full Text PDF

Objectives: Medical treatment of tyrosinemia I relies on the herbicide NTBC [Orfadin 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione], an inhibitor of plant and mammalian 2-oxoacid-utilizing dioxygenases with a collective catalytic cycle ('HAG' mechanism). We hypothesize that NTBC-treated tyrosinemia I is a human model for the pathogenic role of two major enzymes in this class, 4-hydroxyphenylpyruvate dioxygenase (4-HPPD; EC 1.13.

View Article and Find Full Text PDF

The hypusine biosynthetic steps represent novel targets for intervention in cell proliferation. Hypusine is a rare amino acid, formed posttranslationally in one cellular protein, eIF5A, and is essential for cell proliferation. Deoxyhypusine hydroxylase, the metalloenzyme catalyzing the final step in hypusine biosynthesis, and prolyl 4-hydroxylase, a non-heme iron enzyme critical for collagen processing, can be inhibited by small chelating molecules that target their essential metal atom.

View Article and Find Full Text PDF

Basement membranes, critical for vital organs like the lungs, consist of two interwoven homopolymers, one assembled by type IV collagens and one by laminins. We hypothesized their serum antigens C-IV and P1, respectively, to be global measures for the maturity of these organs. In 39 very low birth weight premature neonates (means: gestational age, 25.

View Article and Find Full Text PDF

Background: The etiologic heterogeneity of fibrotic liver disease has resulted in the formulation of diverse, often disease-specific, classification systems for biopsy assessment, based on tissue morphology and staining. Their qualitative nature and observer dependency remain a concern, and no classification exists for several significant conditions--for example, alpha1-antitrypsin deficiency (alpha1-ATD). The authors propose a disease- and morphology-independent numeric ranking system to objectively quantify fibrosis in a standard histologic section, based on its content of protein amino acids.

View Article and Find Full Text PDF

Mechanisms that control the balance between cell proliferation and death are important in the development of vascular lesions. Rat primary smooth muscle cells were 80% inhibited by low microgram doses of hydrocortisone (HC) and 50% inhibited by nanogram concentrations of transforming growth factor-beta1 (TGF-beta1), although some lines acquired resistance in late passage. However, comparable doses of HC, or TGF-beta1, failed to inhibit most human lesion-derived cell (LDC) lines.

View Article and Find Full Text PDF

The HIV-1 protein Rev, critical for translation of incompletely spliced retroviral mRNAs encoding capsid elements, requires a host cell protein termed "eukaryotic initiation factor 5A" (eIF-5A). This is the only protein containing hypusine, a lysine-derived hydroxylated residue that determines its proposed bioactivity, the translation of a subset of cellular mRNAs controlling G1-to-S transit of the cell cycle. We postulated that inhibiting the hypusine-forming deoxyhypusyl hydroxylase (DOHH) should, by depleting eukaryotic initiation factor 5A, compromise Rev function and thus reduce HIV-1 multiplication.

View Article and Find Full Text PDF

The history of medicine this century is darkened by the downfall of the German medical profession, exposed during the doctors' trial at Nuremberg in 1946. Relying largely on documents published during 1933 in German medical journals, this paper examines two widely accepted notions of those events, metaphorically termed "slippery slope" and "sudden subversion." The first connotes a gradual slide over infinitesimal steps until, suddenly, all footing is lost; the second conveys forced take over of the profession's leadership and values.

View Article and Find Full Text PDF

Four deleterious mutations are described in the gene for HSD11B2, which encodes the type 2 isoenzyme of 11 beta-hydroxysteroid dehydrogenase (11 beta HSD2). In seven families with one or more members affected by apparent mineralocorticoid excess, this disorder is shown to be the result of a deficiency in 11 beta HSD2. Surprisingly, the patients are all homozygous for their mutation.

View Article and Find Full Text PDF

The formation of the unusual amino-acid hypusine in eIF-5A (eukaryotic initiation factor 5A) is associated with cellular proliferation. We used a panel of compounds, including mimosine, to probe the relationship between the exit from the G1 phase of the cell cycle, i.e.

View Article and Find Full Text PDF

The biochemical and morphological consequences of procollagen prolyl 4-hydroxylase inhibition by pyridine-2,4-dicarboxylic acid (2,4-PDCA) and its diethyl ester (diethyl-2,4-PDC) were studied in chick-embryo calvaria, which predominantly synthesize type I collagen. Half-maximal inhibition of tissue hydroxyproline formation required 650 microM-2,4-PDCA, whereas the Ki with respect to chicken prolyl 4-hydroxylase in vitro was 2 microM. In contrast, half-maximal inhibition was caused by 10 microM-diethyl-2,4-PDC in the intact calvaria, although chicken prolyl 4-hydroxylase in vitro was not inhibited even at 1 mM.

View Article and Find Full Text PDF

The final step of hypusine formation in the eukaryotic translation initiation factor 4D (eIF-4D) is mediated by the enzyme deoxyhypusyl hydroxylase. In an effort to find specific inhibitors for this enzyme, we have studied the effects of two catecholpeptides, N alpha-acetyl-N delta-(3,4-dihydroxybenzoyl)-L-Orn-L-Pro-Gly (compound I) and N alpha-acetyl-N delta-(2,3-dihydroxybenzoyl)-L-Orn-L-Pro-Gly (compound II). Their structures were designed for anchorage to the enzyme s active site, utilizing the catechol-mediated chelation of a putative, enzyme-bound metal ion.

View Article and Find Full Text PDF

Forty-one aromatic and aliphatic analogs of alpha-ketoglutarate were studied kinetically for their interaction with the alpha-ketoglutarate binding site of gamma-butyrobetaine hydroxylase obtained from Pseudomonas sp. AK1. Together, the compounds represent structural permutations probing the contribution of: 1) the C5 carboxyl group of alpha-ketoglutarate (domain I); 2) the C1-C2 keto acid moiety of alpha-ketoglutarate (domain II); 3) the distance between domains I and II; and 4) the spatial relationship of the two domains required for optimal interaction with the cosubstrate binding site.

View Article and Find Full Text PDF

It has previously been demonstrated that the compound mimosine inhibits cell cycle traverse in late G1 phase prior to the onset of DNA synthesis (Hoffman BD, Hanauske-Abel HM, Flint A, Lalande M: Cytometry 12:26-32, 1991; Lalande M: Exp Cell Res 186:332-339, 1990). These results were obtained by using flow cytometric analysis of DNA content to compare the effects of mimosine on cell cycle traverse with those of aphidicolin, an inhibitor of DNA polymerase alpha activity. We have now measured the incorporation of bromodeoxyuridine into lymphoblastoid cells by flow cytometry to determine precisely where the two inhibitors act relative to the initiation of DNA synthesis.

View Article and Find Full Text PDF