Publications by authors named "Hanane Lougraimzi"

Global Climate Change could change physical parameters in oceans, such as salinity and temperature. The impact of such changes in phytoplankton has not been well stated yet. In this study the effect of combination of three levels of temperature (20, 23, and 26 °C), and three levels of salinity (33, 36, and 39) on growth of a mixture co-cultivation of three common species from phytoplankton (one cyanobacteria, Synechococcus sp.

View Article and Find Full Text PDF

Global Climate Change (GCC) could change physical parameters in oceans, such as salinity and temperature. The impact of such changes in phytoplankton has not been well stated yet. In this study, the effect of combination of three levels of temperature (20, 23, and 26 °C) and three levels of salinity (33, 36, and 39) on growth of a mixture co-cultivation of three common species from phytoplankton (one cyanobacteria, Synechococcus sp.

View Article and Find Full Text PDF

Global Climate Change could change physical parameters in oceans, such as salinity and temperature. The impact of such changes in phytoplankton has not been well stated yet. In this study the effect of combination of three levels of temperature (20, 23, and 26 °C), and three levels of salinity (33, 36, and 39) on growth of a mixture co-cultivation of three common species from phytoplankton (one cyanobacteria, Synechococcus sp.

View Article and Find Full Text PDF

Global climate change (GCC) constitutes a complex challenge posing a serious threat to biodiversity and ecosystems in the next decades. There are several recent studies dealing with the potential effect of increased temperature, decrease of pH or shifts in salinity, as well as cascading events of GCC and their impact on human-environment systems. Microalgae as primary producers are a sensitive compartment of the marine ecosystems to all those changes.

View Article and Find Full Text PDF