Targeting therapy is a concept that has gained significant importance in recent years, especially in oncology. The severe dose-limiting side effects of chemotherapy necessitate the development of novel, efficient and tolerable therapy approaches. In this regard, the prostate specific membrane antigene (PSMA) has been well established as a molecular target for diagnosis of, as well as therapy for, prostate cancer.
View Article and Find Full Text PDFProstate cancer (PCa) is one of the most common cancer types worldwide. 90% of men with late stage PCa will develop bone metastases. Since the expression level of PSMA (prostate-specific membrane antigen) in bone metastases can vary significantly, a compound is being searched for which accumulates in bone metastases independently of PSMA level.
View Article and Find Full Text PDF(1) Background: Prostate-specific membrane antigen (PSMA) has been extensively studied in the last decade. It became a promising biological target in the diagnosis and therapy of PSMA-expressing cancer diseases. Although there are several radiolabeled PSMA inhibitors available, the search for new compounds with improved pharmacokinetic properties and simplified synthesis is still ongoing.
View Article and Find Full Text PDFTargeting vectors bound to a chelator represent a significant fraction of radiopharmaceuticals used nowadays for diagnostic and therapeutic purposes in nuclear medicine. The use of squaramides as coupling units for chelator and targeting vector helps to circumvent the disadvantages of several common coupling methods. This review gives an overview of the use of squaric acid diesters (SADE) as linking agents.
View Article and Find Full Text PDFThe L-lysine urea-L-glutamate (KuE) represents a key motif in recent diagnostic and therapeutic radiopharmaceuticals targeting the prostate specific membrane antigen (PSMA). Using a squaric acid moiety for coupling of KuE with a radioactive label, the squaric acid as a linker in the PSMA ligand seems to mimic the aromatic structure of the naphthylalanine unit on PSMA-617. In this work, we investigate the influence of squaric acid moiety on the biological activity of the compound carrying a KuE motif and three typical chelates.
View Article and Find Full Text PDF