Publications by authors named "Hanan Khemiri"

Erythropoietin (EPO) has beneficial tissue-protective effects in several diseases but erythrocytosis may cause deleterious effects in EPO-treated patients. Thus carbamylated-EPO (C-EPO) and other derivatives retaining tissue-protective but lacking bone marrow-stimulating actions have been developed. Although EPO modulates ventilatory responses, the effects of C-EPO on ventilation have not been investigated.

View Article and Find Full Text PDF

Changes in arterial Po2, Pco2, and pH are the strongest stimuli sensed by peripheral and central chemoreceptors to adjust ventilation to the metabolic demand. Erythropoietin (Epo), the main regulator of red blood cell production, increases the hypoxic ventilatory response, an effect attributed to the presence of Epo receptors in both carotid bodies and key brainstem structures involved in integration of peripheral inputs and control of breathing. However, it is not known whether Epo also has an effect on the hypercapnic chemoreflex.

View Article and Find Full Text PDF

During hypoxic or hypoxemic conditions, tissue oxygenation and arterial O(2) carrying capacity are upregulated by two complementary systems, namely the neural respiratory network (central and peripheral) that leads to increased minute ventilation thereby increasing tissue oxygenation, and erythropoietin (Epo) release by the kidney that activates erythropoiesis in bone marrow to augment arterial blood O(2) carrying capacity. Despite the fact that both neural respiratory control and Epo-mediated elevation of red blood cells are responsible for keeping arterial O(2) content optimal, no interaction between these systems has been described so far. Here we review data obtained in our laboratory demonstrating that ventilatory and erythropoietic systems are tightly connected.

View Article and Find Full Text PDF

Clinical use of erythropoietin in adult and newborn patients has revealed its involvement in neuroprotection, neurogenesis, and angiogenesis. More recently, we showed in adult mouse, that brain erythropoietin interacts with the major brainstem centers associated with respiration to enhance the ventilatory response to acute and chronic conditions of physiological hypoxia (e.g.

View Article and Find Full Text PDF

Background: Serotonin (5-HT) has a role in respiratory function and dysfunction. Although 5-HT affects respiratory drive to both phrenic and cranial motoneurons, relatively little is known about the role of 5-HT receptor subtypes in the control of upper airway muscle (UAM) respiratory activity.

Materials And Methods: Here, we performed central injections of 5-HT1A agonist (8-OHDPAT) or antagonist (WAY100635) in anesthetized rats and analyzed changes in the electromyographic activity of several UAM and other cardiorespiratory parameters.

View Article and Find Full Text PDF