A variety of pathologies are associated with exposure to supraphysiological concentrations of essential metals and to non-essential metals and metalloids. The molecular mechanisms linking metal exposure to human pathologies have not been clearly defined. To address these gaps in our understanding of the molecular biology of transition metals, the genomic effects of exposure to Group IB (copper, silver), IIB (zinc, cadmium, mercury), VIA (chromium), and VB (arsenic) elements on the yeast Saccharomyces cerevisiae were examined.
View Article and Find Full Text PDFUntil recently, the only biological function attributed to the 3'-->5' exonuclease activity of DNA polymerases was proofreading of replication errors. Based on genetic and biochemical analysis of the 3'-->5' exonuclease of yeast DNA polymerase delta (Pol delta) we have discerned additional biological roles for this exonuclease in Okazaki fragment maturation and mismatch repair. We asked whether Pol delta exonuclease performs all these biological functions in association with the replicative complex or as an exonuclease separate from the replicating holoenzyme.
View Article and Find Full Text PDFMost errors that arise during DNA replication can be corrected by DNA polymerase proofreading or by post-replication mismatch repair (MMR). Inactivation of both mutation-avoidance systems results in extremely high mutability that can lead to error catastrophe. High mutability and the likelihood of cancer can be caused by mutations and epigenetic changes that reduce MMR.
View Article and Find Full Text PDF