Publications by authors named "Hanan A Hosni Mahmoud"

Deep learning models are usually utilized to learn from spatial data, only a few studies are proposed to predict glaucoma time progression utilizing deep learning models. In this article, we present a bidirectional recurrent deep learning model (Bi-RM) to detect prospective progressive visual field diagnoses. A dataset of 5413 different eyes from 3321 samples is utilized as the learning phase dataset and 1272 eyes are used for testing.

View Article and Find Full Text PDF

Early detection of high fall risk is an important process of fall prevention in hospitalized elderly patients. Hospitalized elderly patients can face several falling risks. Monitoring systems can be utilized to protect health and lives, and monitoring models can be less effective if the alarm is not invoked in real time.

View Article and Find Full Text PDF

Deep learning models are effectively employed to transfer learning to adopt learning from other areas. This research utilizes several neural structures to interpret the electroencephalogram images (EEG) of brain-injured cases to plan operative imagery-computerized interface models for controlling left and right hand movements. This research proposed a model parameter tuning with less training time using transfer learning techniques.

View Article and Find Full Text PDF

Detection of limb motor functions utilizing brain signals is a significant technique in the brain signal gain model (BSM) that can be effectively employed in various biomedical applications. Our research presents a novel technique for prediction of feet motor functions by applying a deep learning model with cascading transfer learning technique to use the electroencephalogram (EEG) in the training stage. Our research deduces the electroencephalogram data (EEG) of stroke incidence to propose functioning high-tech interfaces for predicting left and right foot motor functions.

View Article and Find Full Text PDF

Consumer behavior variants are evolving by utilizing advanced packing models. These models can make consumer behavior detection considerably problematic. New techniques that are superior to customary models to be utilized to efficiently observe consumer behaviors.

View Article and Find Full Text PDF

Pneumonia is a common disease that occurs in many countries, more specifically, in poor countries. This disease is an obstructive pneumonia which has the same impression on pulmonary radiographs as other pulmonary diseases, which makes it hard to distinguish even for medical radiologists. Lately, image processing and deep learning models are established to rapidly and precisely diagnose pneumonia disease.

View Article and Find Full Text PDF

Epigenetic changes are a necessary characteristic of all cancer types. Tumor cells usually target genetic changes and epigenetic alterations as well. It is most beneficial to identify epigenetic similar features among cancer various types to be able to discover the appropriate treatments.

View Article and Find Full Text PDF

This paper presents a technique for the detection of keratoconus via the construction of a 3D eye images from 2D frontal and lateral eye images. Keratoconus is a disease that affects the cornea. Normal case eyes have a round-shaped cornea, while patients who suffer from keratoconus have a cone-shaped cornea.

View Article and Find Full Text PDF

In this paper, we introduce new concepts in the machine translation paradigm. We treat the corpus as a database of frequent word sets. A translation request triggers association rules joining phrases present in the source language, and phrases present in the target language.

View Article and Find Full Text PDF

Face detection perceives great importance in surveillance paradigm and security paradigm areas. Face recognition is the technique to identify a person identity after face detection. Extensive research has been done on these topics.

View Article and Find Full Text PDF