In lophiform teleosts, the first dorsal fin has evolved as a specialized structure called the "illicium" equipped with the esca, which is a modified skin flap used to attract small fish for predation. The motor control system of the illicium, however, remained unknown. The present study investigated the innervation of muscles for the illicium and morphology of motoneurons innervating them in the striated frogfish Antennarius striatus.
View Article and Find Full Text PDFPufferfish saxitoxin- and tetrodotoxin (TTX)-binding protein (PSTBP) is considered to transfer TTX between tissues. The immunohistochemical distribution of PSTBP-homolog (PSTBPh) and TTX in the brain and pituitary of hatchery-reared juvenile tiger puffer Takifugu rubripes was investigated. PSTBPh was observed mainly in the pars intermedia of the pituitary.
View Article and Find Full Text PDFIn mammals and birds, tool-using species are characterized by their relatively large telencephalon containing a higher proportion of total brain neurons compared to other species. Some teleost species in the wrasse family have evolved tool-using abilities. In this study, we compared the brains of tool-using wrasses with various teleost species.
View Article and Find Full Text PDFEven though microbial photosensitive proteins have been used for optogenetics, their use should be optimized to precisely control cell and tissue functions in vivo. We exploited CCR4 and ChR, cation channelrhodopsins from algae, GC1, a guanylyl cyclase rhodopsin from a fungus, and photoactivated adenylyl cyclases (PACs) from cyanobacteria (PAC) or bacteria (PAC), to control cell functions in zebrafish. Optical activation of CCR4 and ChR in the hindbrain reticulospinal V2a neurons, which are involved in locomotion, induced swimming behavior at relatively short latencies, whereas activation of GC1 or PACs achieved it at long latencies.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) transmit signals into cells depending on the G protein type. To analyze the functions of GPCR signaling, we assessed the effectiveness of animal G-protein-coupled bistable rhodopsins that can be controlled into active and inactive states by light application using zebrafish. We expressed Gq- and Gi/o-coupled bistable rhodopsins in hindbrain reticulospinal V2a neurons, which are involved in locomotion, or in cardiomyocytes.
View Article and Find Full Text PDFVisual pathways to the telencephalon in teleost fishes have been studied in detail only in a few species, and their evolutionary history remained unclear. On the basis of our recent studies we propose that there were two visual pathways in the common ancestor of teleosts, while one of them became lost in acanthopterygian fishes that emerged relatively recently. Our in-depth analyses on the connections of visual centers also revealed that there are connections shared with those of mammals, and retinotopic organization of the ascending connections is maintained at least to the level of the diencephalon in the yellowfin goby.
View Article and Find Full Text PDFThree paralogous genes for gonadotropin-releasing hormone (GnRH; gnrh1, gnrh2, and gnrh3) and GnRH receptors exist in non-mammalian vertebrates. However, there are some vertebrate species in which one or two of these paralogous genes have become non-functional during evolution. The developmental migration of GnRH neurons in the brain is evolutionarily conserved in mammals, reptiles, birds, amphibians, and jawed teleost fish.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
February 2022
We tested whether crowding stress affects the hypothalamo-pituitary-interrenal (HPI) axis of the self-fertilizing fish, Kryptolebias marmoratus, which is known to be aggressive in the laboratory conditions but sometimes found as a group from a single land crab burrow in the wild. The projection of corticotropin-releasing hormone (CRH) neurons to the adrenocorticotropic hormone (ACTH) cells in the pituitary was confirmed by dual-label immunohistochemistry; CRH-immunoreactive (ir) fibers originating from cell bodies located in the lateral tuberal nucleus (NLT) of the hypothalamus were observed to project to ACTH-ir cells in the rostral pars distalis of the pituitary. Then, fish were reared solitary or in pairs for 14 days, and the number of CRH-ir cell bodies in the NLT of the hypothalamus and cortisol levels in the body without head region were compared.
View Article and Find Full Text PDFAlthough all vertebrate cerebella contain granule cells, Purkinje cells, and efferent neurons, the cellular arrangement and neural circuitry are highly diverse. In amniotes, cerebellar efferent neurons form clusters, deep cerebellar nuclei, lie deep in the cerebellum, and receive synaptic inputs from Purkinje cells but not granule cells. However, in the cerebellum of teleosts, the efferent neurons, called eurydendroid cells, lie near the cell bodies of Purkinje cells and receive inputs both from axons of Purkinje cells and granule cell parallel fibers.
View Article and Find Full Text PDFAscending visual projections similar to the mammalian thalamocortical pathway are found in a wide range of vertebrate species, but their homology is debated. To get better insights into their evolutionary origin, we examined the developmental origin of a thalamic-like sensory structure of teleosts, the preglomerular complex (PG), focusing on the visual projection neurons. Similarly to the tectofugal thalamic nuclei in amniotes, the lateral nucleus of PG receives tectal information and projects to the pallium.
View Article and Find Full Text PDFThe nucleus prethalamicus (PTh) receives fibers from the optic tectum and then projects to the dorsal telencephalon in the yellowfin goby Acanthogobius flavimanus. However, it remained unclear whether the PTh is a visual relay nucleus, because the optic tectum receives not only visual but also other sensory modalities. Furthermore, precise telencephalic regions receiving prethalamic input remained unknown in the goby.
View Article and Find Full Text PDFThe cerebellum and the cerebellum-like structure in the mesencephalic tectum in zebrafish contain multiple cell types, including principal cells (i.e., Purkinje cells and type I neurons) and granule cells, that form neural circuits in which the principal cells receive and integrate inputs from granule cells and other neurons.
View Article and Find Full Text PDFWe identified a morphologically uncommon piscine retractor lentis muscle in the yellowfin goby Acanthogobius flavimanus. This lentis muscle has a shape similar to the Greek small letter lambda (λ). The two legs of the muscle are attached to the retinal periphery at the ventral eyecup, while the tip is connected to the lens surface by a ligament.
View Article and Find Full Text PDFGobiida is a basal subseries of percomorphs in teleost fishes, holding a useful position for comparisons with other orders of Percomorpha as well as other cohort of teleosts. Here, we describe a telencephalic atlas of a Gobiida species Rhinogobius flumineus (Mizuno, Memoirs of the College of Science, University of Kyoto, Series B: Biology, 1960; 27, 3), based on cytoarchitectural observations, combined with analyses of the distribution patterns of neurochemical markers and transcription factors. The telencephalon of R.
View Article and Find Full Text PDFDual visual pathways reaching the telencephalon appear to be an ancient vertebrate trait, but some teleost fish seem to possess only one pathway via the optic tectum. We undertook the present study to determine if and when this loss occurred during evolution. Tracer injection experiments to the optic nerve, the optic tectum, and the dorsal telencephalon were performed in the present study, to investigate ascending visual pathways to the dorsal telencephalon in an acanthopterygian teleost, the yellowfin goby Acanthogobius flavimanus (Temminck & Schlegel, 1845).
View Article and Find Full Text PDFIn this article we review descending neural pathways to the spinal cord in teleosts, compared with mammals. Descending pathways to the spinal cord are crucial in controlling various behaviors in vertebrates. The major difference between teleosts and mammals is the lack of corticospinal (or palliospinal) tracts.
View Article and Find Full Text PDF