Antibiotics are emerging environmental contaminants posing critical health risks due to their tendency to concentrate in living things and eventually infiltrate the human body. Sulfamethoxazole (SMZ) is among the commonly detected antibiotics in wastewater requiring effective removal approach. A sustainable, thermally stable and easily separable magnetic sporopollenin-cellulose triacetate (Msp-CTA) was developed via a simple step synthesis for eliminating SMZ from aqueous solution.
View Article and Find Full Text PDFMeeting current decarbonization targets requires a shift to a hydrogen energy nexus, yet, water is a valuable resource for hydrogen production, shifting the perspective to the use of HS instead within the context of circular economy. A comprehensive understanding of the environmental impacts, using a cradle-to-gate life cycle assessment (LCA), was developed focusing on the operation of hydrogen sulfide-methane reforming (HSMR) for H production benchmarked to conventional technologies, steam methane reforming (SMR) and SMR + carbon capture (CC), as feedstock to produce sustainable fuels (i.e.
View Article and Find Full Text PDFOne of the most prevalent infectious diseases and a key driver of antibiotic prescriptions in pediatrics is urinary tract infection (UTI). Due to the emergence of more resistant uropathogenic bacterial and fungal strains, current treatments are no longer effective, necessitating the urgent development of novel antibacterial and antifungal drugs. In this study, the antifungal, antibacterial, and anti-biofilm capabilities of compounds, such as tannase (TN) and gallic acid (GA), which were produced from a novel natural source, Acinetobacter baumannii (AB) bacteria, were assessed for the inactivation of uropathogenic microorganisms (UMs).
View Article and Find Full Text PDFThis study investigates the relationship between online travel sites' affordances (OTSA), technology readiness (TR), and their impact on tourists' online purchase intentions (OPI), as well as the moderating role of trust on OPI and e-loyalty. The survey was conducted online from September 2022 until November 2022 on 306 participants who were selected purposively. The collected data was analyzed using Partial Least Squares-Structural Equation Analysis (PLS-SEM).
View Article and Find Full Text PDFThe potentials of biomass-based carbon quantum dot (CQD) as an adsorbent for batch adsorption of dyes and its photocatalytic degradation capacity for dyes which are congo red (CR) and methylene blue (MB) have been conducted in this study. The CQDs properties, performance, behaviour, and photoluminescence characteristics were assessed using batch adsorption experiments which were carried out under operating conditions including, temperature, pH and dosage. The morphological analysis revealed that CQDs are highly porous, uniform, closely aligned and multi-layered.
View Article and Find Full Text PDFThe disposal practises and preferences of household waste from electrical and electronic equipment disposal (WEEE) are essential components in material flow analysis (MFA). Nevertheless, the synergistic of consumers' behaviours and preferences with the disposal of different WEEE has yet to be investigated in depth. This study examined several consumer features of WEEE management using a quantitative questionnaire survey, including consumers' disposal behaviours and preferences.
View Article and Find Full Text PDFReverse osmosis (RO) membrane-based desalination system with various configurations has emerged as a critical option for reclaiming brackish water. This study aims to evaluate the environmental performance of the combination of photovoltaic-reverse osmosis (PVRO) membrane treatment system via life cycle assessment (LCA). The LCA was calculated using SimaPro v9 software with ReCiPe 2016 methodology and EcoInvent 3.
View Article and Find Full Text PDFSeveral water and wastewater technologies have been implored for the removal of dyes during wastewater treatments; however; different types have been reportedly found in surface and groundwater systems. Hence, there is a need to investigate other water treatment technologies for the complete remediation of dyes in aquatic environments. In this study, novel chitosan-based polymer inclusion membranes (PIMs) were synthesized for the removal of malachite green dye (MG) which is a recalcitrant of great concern in water.
View Article and Find Full Text PDFAdsorption efficiency of a duo-material blend featuring the fabrication of modified chitosan adsorbents (powder (C-emimAc), bead (CB-emimAc) and sponge (CS-emimAc)) for the removal of Cd(II) from aqueous solution was investigated. The chitosan@activated carbon (Ch/AC) blend was developed in a green ionic solvent, 1-ethyl-3-methyl imidazolium acetate (EmimAc) and its characteristics was examined using FTIR, SEM, EDX, BET and TGA. The possible mechanism of interaction between the composites and Cd(II) was also predicted using the density functional theory (DFT) analysis.
View Article and Find Full Text PDFBackground And Aim: The capa plant ( L.) has been widely used as a traditional herbal medicine in many parts of the world, including South Aceh, Indonesia. It is generally used for wound healing due to its antibacterial and anti-inflammatory properties.
View Article and Find Full Text PDFAims: Amodiaquine is a 4-aminoquinoline used extensively for the treatment and prevention of malaria. Orally administered amodiaquine is largely converted to the active metabolite desethylamodiaquine. Amodiaquine can cause bradycardia, hypotension, and electrocardiograph QT interval prolongation, but the relationship of these changes to drug concentrations is not well characterized.
View Article and Find Full Text PDFSurface -functionalised silica networks are advanced adsorbents. They have been given much attention for treating wastewater using the adsorption technique due to the silanol reactivity, resulting in strong binding affinities towards many pollutants. This review discusses the removal of anionic azo dyes utilising various functional groups such as amines, surfactants, polymers, macrocyclic, and other chelating groups functionalised on silica's surface.
View Article and Find Full Text PDFThe azo dye orange II is used extensively in the textile sector for coloring fabrics. High concentrations of it are released into aqueous environments through textile effluents. Therefore, its removal from textile wastewater and effluents is necessary.
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2022
Water pollution due to textile dyes is a serious threat to every life form. Bacteria can degrade and detoxify toxic dyes present in textile effluents and wastewater. The present study aimed to evaluate the degradation potential of eleven bacterial strains for azo dye methyl red.
View Article and Find Full Text PDFBioelectrochemical system (BES) is an emerging technology that can treat wastewater via microbial activity while producing energy simultaneously. The system can couple with conventional systems to improve system performance. This study aims to compare the environmental performance of BES and the integrated microbial fuel cell (MFC) systems via a life cycle assessment methodology and identify the major environmental hotspots of the system.
View Article and Find Full Text PDFIn the current world situation, population and industrial growth have become major problems for energy and environmental concerns. Extremely noxious pollutants such as heavy metal ions, dyes, antibiotics, phenols, and pesticides in water are the main causes behind deprived water quality leading to inadequate access to clean water. In this connection, graphite carbon nitride (GCN or g-CN) a nonmetallic polymeric material has been utilized extensively as a visible-light-responsive photocatalyst for a variety of environmental applications.
View Article and Find Full Text PDFBackground: This study aims to explore the Indonesian tourists' demand for medical tourism services in Malaysia. The study also investigates the Indonesian medical tourists' profiles and their preference for Malaysia for medical treatment services.
Methods: This study conducted interviews with 49 potential patients from Indonesia who received cardiac treatment at the National Heart Institute (IJN) in Kuala Lumpur, Malaysia.
A life cycle assessment of anaerobic-treated palm oil mill effluent (POME) was conducted to assess the environmental performance on two integrated treatment processes: the typical hollow fiber membrane ultrafiltration module coupled with adsorption and electro-oxidation as pretreatment. The analysis was undertaken using the ReCiPe 2016 method and SimaPro v9 software was employed using a 'cradle-to-gate' approach. The results showed that hollow fiber membrane from the adsorption integrated membrane impacted significantly at 42% to 99% across all impact categories for both processes.
View Article and Find Full Text PDFPolymers (Basel)
December 2021
The reduction of chemical oxygen demand (COD) from palm oil mill effluent (POME) is very significant to ensure aquatic protection and the environment. Continuous adsorption of COD in a fixed bed column can be an effective treatment process for its reduction prior to discharge. Adsorption capacity of bone derived biocomposite synthesized from fresh cow bones, zeolite, and coconut shells for the reduction in the organic pollutant parameter was investigated in this study in a fixed bed column.
View Article and Find Full Text PDFObjective: Primary open-angle glaucoma (POAG) is a degenerative optic neuropathy disease which has somewhat similar pathophysiology to Alzheimer's disease (AD). This study aims to determine the presence of medial temporal atrophy and parietal lobe atrophy in patients with POAG compared to normal controls using medial temporal atrophy (MTA) scoring and posterior cortical atrophy (PCA) scoring system on T1 magnetization-prepared rapid gradient-echo.
Methods: 50 POAG patients and 50 normal subjects were recruited and an MRI brain with T1-magnetization-prepared rapid gradient-echo was performed.
Asian Biomed (Res Rev News)
December 2021
Tuberculosis is caused by . Tuberculosis of the central nervous system is common and manifestations include meningeal and intraparenchymal diseases. However, intraventricular tuberculous abscess is a rare manifestation of intracranial tuberculous infection.
View Article and Find Full Text PDFThis paper provides a comprehensive review of 71 previous studies on the life cycle assessment (LCA) of nanomaterials (NMs) from 2001 to 2020 (19 years). Although various studies have been carried out to assess the efficiency and potential of wastes for nanotechnology, little attention has been paid to conducting a comprehensive analysis related to the environmental performance and hotspot of NMs, based on LCA methodology. Therefore, this paper highlights and discusses LCA methodology's basis (goal and scope definition, system boundary, life cycle inventory, life cycle impact assessment, and interpretation) to insights into current practices, limitations, progress, and challenges of LCA application NMs.
View Article and Find Full Text PDFBackground: Kimura disease is a rare inflammatory condition classically manifested as painless subcutaneous nodules in the head and neck region and associated with regional cervical lymphadenopathy and salivary gland involvement.
Objective: The purpose of this report is to illustrate the diagnostic difficulty due to its rarity and non-specific clinical presentation.
Case Presentation: We present a case of Kimura disease with bilateral eyelid swelling, parotid involvement, and cervical lymphadenopathy in a young boy.
In this study, a simple method for the fabrication of highly diffusive, adsorptive and conductive eco-friendly polyelectrolyte membranes (PEMs) with sulfonate functionalized pectin and poly(vinyl alcohol)(PVA) was established. The graft-copolymers were synthesized by employing the use of potassium persulfate as a free radical initiator from pectin (PC), a carbohydrate polymer with 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS) and sodium 4-vinylbenzene sulphonate (SVBS). The PEMs were fabricated from the blends of pectin graft-copolymers (PC-g-AMPS and PC-g-SVBS) and PVA by using a solution casting method, followed by chemical crosslinking with glutaraldehyde.
View Article and Find Full Text PDFPolyelectrolyte membranes (PEMs) are a novel type of material that is in high demand in health, energy and environmental sectors. If environmentally benign materials are created with biodegradable ones, PEMs can evolve into practical technology. In this work, we have fabricated environmentally safe and economic PEMs based on sulfonate grafted sodium alginate (SA) and poly(vinyl alcohol) (PVA).
View Article and Find Full Text PDF