Hydrogels are materials made of crosslinked 3D networks of hydrophilic polymer chains that can absorb and retain significant amounts of water due to their hydrophilic structure without being dissolved. In relation to alternative biomaterials, hydrogels offer increased biocompatibility and biodegradability, giving them distinct advantages. Thus, hydrogel platforms are considered to have the potential for the development of biomedical applications.
View Article and Find Full Text PDFGelatin-based hydrogels have garnered significant attention in the fields of drug delivery systems and tissue engineering owing to their biodegradability, biocompatibility, elasticity, flexibility and nontoxic nature. However, there is a lack of information regarding type-A-gelatin-based hydrogels. In this sense, the main aim of this work was the evaluation of the properties of type-A-gelatin-based hydrogel achieved using two different gelation temperatures (4 °C and 20 °C).
View Article and Find Full Text PDFA gelatin-based hydrogel was infiltrated and degraded-released in two different titanium foams with porosities of 30 and 60 vol.% (Ti30 and Ti60 foams) and fabricated by the space holder technique to evaluate its potential to act as an innovative, alternative, and localised method to introduce both active pharmaceutical ingredients, such as antibiotics and non-steroidal anti-inflammatory drugs, and growth factors, such as morphogens, required after bone-tissue replacement surgeries. In addition, the kinetic behaviour was studied for both infiltration and degradation-release processes.
View Article and Find Full Text PDF