Publications by authors named "Hana Vakili"

Human (h) growth hormone (GH) production studies are largely limited to effects on secretion. How pituitary hGH gene (hGH-N/GH1) expression is regulated is important in our understanding of the role hGH plays in physiology and disease. Here we assess for the first time the effect of sleep deprivation (SD) and high-fat diet (HFD) on hGH-N expression in vivo using partially humanized 171hGH/CS transgenic (TG) mice, and attempted to elucidate a role for DNA methylation.

View Article and Find Full Text PDF

Background: Therapeutic humanized IgG1 kappa monoclonal antibody (t-mAb), daratumumab (DARA) is a Food and Drug Administration approved drug for the treatment of relapsed/refractory plasma cell myeloma (PCM). DARA appears on serum protein electrophoresis (SPEP) and on serum immunofixation (sIFE) as an IgG kappa monoclonal immunoglobulin protein (M-protein), complicating the assessment of the patients' response to therapy. A more ominous threat to patient safety can occur with the misinterpretation of the presence of a small t-mAb spike as being the residual product of the patient's neoplastic clone, presented either as oligoclonality or new clonality, which could result in incorrect interpretation of failure to achieve remission.

View Article and Find Full Text PDF

Aims/hypothesis: Long non-coding RNAs (lncRNAs) are garnering increasing attention for their putative roles in the pathogenesis of chronic diseases, including diabetic kidney disease (DKD). However, much about in vivo lncRNA functionality in the adult organism remains unclear. To better understand lncRNA regulation and function in DKD, we explored the effects of the modular scaffold lncRNA HOTAIR (HOX antisense intergenic RNA), which approximates chromatin modifying complexes to their target sites on the genome.

View Article and Find Full Text PDF

Pancreatic β-cell failure is characterized by compromised insulin secretion in response to glucose, which ultimately results in hyperglycemia, the clinical hallmark of type 2 diabetes mellitus (T2DM). Acute exposure to plasma free fatty acids (FFAs) potentiates glucose stimulated insulin secretion (GSIS), while chronic exposure impairs GSIS, and the latter has been associated with the mechanism of β cell failure in obesity linked T2DM. By contrast, growth hormone (GH) signaling has been linked positively to GSIS in β cells.

View Article and Find Full Text PDF

Human (h) pituitary growth hormone (GH) is both physiologically and clinically important. GH reaches its highest circulatory levels in puberty, where it contributes to energy homeostasis and somatogenic growth. GH also helps to maintain tissues and organs and, thus, health and homeostasis.

View Article and Find Full Text PDF

The human (h) placental lactogenic hormone chorionic somatomammotropin (CS) is highly produced during pregnancy and acts as a metabolic adaptor in response to maternal insulin resistance. Maternal obesity can exacerbate this "resistance", and a >75% decrease in CS RNA levels was observed in term placentas from obese vs. lean women.

View Article and Find Full Text PDF

Rhythmicity of biological functions is fundamental for optimal adaptations to environmental cues. Growth hormone (GH) is a major metabolic homeostatic factor that is secreted with a circadian pattern, but whether it is synthesized rhythmically is unknown. We used transgenic mice containing the human (h) GH gene (hGH1) locus to investigate the rhythmicity of hGH synthesis and secretion and to show that RNA and secreted protein levels oscillate over a 24-h cycle.

View Article and Find Full Text PDF

Levels of pituitary growth hormone (GH), a metabolic homeostatic factor with strong lipolytic activity, are decreased in obese individuals. GH declines prior to the onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechanism by which GH is reduced is not clear. We used transgenic mice expressing the human GH (hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromosome structure of the intact GH1 locus.

View Article and Find Full Text PDF

Human chorionic somatomammotropin (CS) and placental growth hormone variant (GH-V) act as metabolic adaptors in response to maternal insulin resistance, which occurs in "normal" pregnancy. Maternal obesity can exacerbate this "resistance," suggesting that CS, GH-V, or transcription factors that regulate their production might be targets. The human CS genes, hCS-A and hCS-B, flank the GH-V gene.

View Article and Find Full Text PDF

Growth hormone (GH) is a prominent metabolic factor that is targeted by glucocorticoids; however, their role in GH production remains controversial. This is explained in part by discrepancies between in vitro and in vivo, short-term versus long-term exposure and even species-specific effects. The prevailing view, however, is that glucocorticoids are negative modulators of growth and GH production.

View Article and Find Full Text PDF

Insulin controls growth hormone (GH) production at multiple levels, including via a direct effect on pituitary somatotrophs. There are no data, however, on the regulation of the intact human (h) GH gene (hGH1) by insulin in non-tumor pituitary cells, but the proximal promoter region (nucleotides -496/+1) responds negatively to insulin in transfected pituitary tumor cells. A DNA-protein interaction was also induced by insulin at nucleotides -308/-235.

View Article and Find Full Text PDF

Growth hormone (GH) is regulated by pituitary and hypothalamic factors as well as peripheral endocrine factors including glucocorticoids and thyroid hormone. Studies on human GH are limited largely to the assessment of plasma levels in endocrine disorders. Thus, insight into the regulation of synthesis versus secretion has come mainly from studies done on non-human GH and/or pituitary tumor cells.

View Article and Find Full Text PDF