Background: Phantoms accurately mimicking the electromagnetic and thermal properties of human tissues are essential for the development, characterization, and quality assurance (QA) of clinically used equipment for Hyperthermia Treatment (HT). Currently, a viable recipe for a fat equivalent phantom is not available, mainly due to challenges in the fabrication process and fast deterioration.
Materials And Methods: We propose to employ a glycerol-in-oil emulsion stabilized with ethylcellulose to develop a fat-mimicking material.
Purpose: Thermal dose delivery in microwave hyperthermia for cancer treatment is expected to benefit from the introduction of ultra-wideband (UWB)-phased array applicators. A full exploitation of the combination of different frequencies to improve the deposition pattern is, however, a nontrivial problem. It is unclear whether the cost functions used for hyperthermia treatment planning (HTP) optimization in the single-frequency setting can be meaningfully extended to the UWB case.
View Article and Find Full Text PDFCombining radiotherapy (RT) with hyperthermia (HT) has been proven effective in the treatment of a wide range of tumours, but the combination of externally delivered, focused heat and stereotactic radiosurgery has never been investigated. We explore the potential of such treatment enhancement via radiobiological modelling, specifically via the linear-quadratic (LQ) model adapted to thermoradiotherapy through modulating the radiosensitivity of temperature-dependent parameters. We extend this well-established model by incorporating oxygenation effects.
View Article and Find Full Text PDFFormulations based on agar and κ-carrageenan were investigated for the production of emulsion gels applicable as tissue mimicking phantoms. The effects of the polysaccharide matrix, the oil content and the presence of surfactants on the micro-/nanostructure, rheology, and mechanical and dielectric properties were investigated. Results showed a high capacity of the agar to stabilize oil droplets, producing gels with smaller (10-21 μm) and more uniform oil droplets.
View Article and Find Full Text PDFTime-reversal (TR) is a known wideband array beam-forming technique that has been suggested as a treatment planning alternative in deep microwave hyperthermia for cancer treatment. While the aim in classic TR is to focus the energy at a specific point within the target, no assumptions are made on secondary lobes that might arise in the healthy tissues. These secondary lobes, together with tissue heterogeneity, may result in hot-spots (HSs), which are known to limit the efficiency of the thermal dose delivery to the tumor.
View Article and Find Full Text PDFThe objective of this study was the design, implementation, evaluation and application of a compact wideband self-grounded bow-tie (SGBT) radiofrequency (RF) antenna building block that supports anatomical proton ( H) MRI, fluorine ( F) MRI, MR thermometry and broadband thermal intervention integrated in a whole-body 7.0 T system. Design considerations and optimizations were conducted with numerical electromagnetic field (EMF) simulations to facilitate a broadband thermal intervention frequency of the RF antenna building block.
View Article and Find Full Text PDFThe feasibility of using hydrogels as a water bolus during hyperthermia treatment was assessed. Three types of gels, high methoxyl (HM) pectin/alginate, xanthan/locust bean gum (LBG) and xanthan/LBG/agarose were evaluated based on their dielectric, rheological and mechanical properties. The most suitable, xanthan/LBG/agarose gel was further used as a water bolus in a hyperthermia array applicator.
View Article and Find Full Text PDFUsing UWB hyperthermia systems has the potential to improve the heat delivery to deep seated tumours. In this paper, we present a novel self-grounded Bow-Tie antenna design which is to serve as the basis element in a phased-array applicator. The UWB operation in the frequency range of 0.
View Article and Find Full Text PDFQuality assurance guidelines are essential to provide uniform execution of clinical trials and treatment in the application of hyperthermia. This document provides definitions for a good hyperthermia treatment and identifies the clinical conditions where a certain hyperthermia system can or cannot adequately heat the tumour volume. It also provides brief description of the characteristics and performance of the current electromagnetic (radiative and capacitive), ultrasound and infra-red heating techniques.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2017
Improved anticancer drugs and drug carriers are needed in combination therapies, such as hyperthermia-assisted chemotherapy. Liposomal drug carriers with advanced functions are attractive candidates for targeted accumulation and drug release in response to heat stimulus. We report on the design of liposomes with a heat-activated surface function.
View Article and Find Full Text PDFThere is a great need of improved anticancer drugs and corresponding drug carriers. In particular, liposomal drug carriers with heat-activated release and targeting functions are being developed for combined hyperthermia and chemotherapy treatments of tumors. The aim of this study is to demonstrate the heat-activation of liposome targeting to biotinylated surfaces, in model experiments where streptavidin is used as a pretargeting protein.
View Article and Find Full Text PDFHere, we present two different brain diagnostic devices based on microwave technology and the associated two first proof-of-principle measurements that show that the systems can differentiate hemorrhagic from ischemic stroke in acute stroke patients, as well as differentiate hemorrhagic patients from healthy volunteers. The system was based on microwave scattering measurements with an antenna system worn on the head. Measurement data were analyzed with a machine-learning algorithm that is based on training using data from patients with a known condition.
View Article and Find Full Text PDFDPPC liposomes ranging from 90 nm to 160 nm in diameter were prepared and used for studies of the formation of supported lipid membranes on silica (SiO2) at temperatures below and above the gel to liquid-crystalline phase transition temperature (Tm = 41 °C), and by applying temperature gradients through Tm. The main method was the quartz crystal microbalance with dissipation (QCM-D) technique. It was found that liposomes smaller than 100 nm spontaneously rupture on the silica surface when deposited at a temperature above Tm and at a critical surface coverage, following a well-established pathway.
View Article and Find Full Text PDFPurpose: To design and test a wideband multi-channel amplifier system for time reversal (TR) microwave hyperthermia, operating in the frequency range 300 MHz-1 GHz, enabling operation in both pulsed and continuous wave regimes. This is to experimentally verify that adaptation of the heating pattern with respect to tumour size can be realised by varying the operating frequency of the antennas and potentially by using Ultra-wideband (UWB) pulse sequences instead of pure harmonic signals.
Materials And Methods: The proposed system consists of 12 identical channels driven by a common reference signal.
A fast beam-forming method for hyperthermia treatment of deep-seated tumors is described and verified. The approach is based on the time-reversal characteristics of Maxwell equations. The basic principle of the method is coupling of the electromagnetic modeling of the system with the actual application.
View Article and Find Full Text PDF