The present study introduced a novel disposable screen-printed carbon electrodes (SPCEs) modified with copper oxide/zeolite nanostructures for eco-friendly selective differential pulse voltammetric quantification of tetrahydrozoline (THZ) in eyedrop samples and biological fluids. Modification of the electrode matrix with copper oxide nanoparticles/zeolite nanostructures (CuONPs/ZY) with their effective and synergistic electrocatalytic activity enhanced the electrode performance against electrooxidation of THZ at 0.960 V in BR at pH 9.
View Article and Find Full Text PDFA natural material made of chitosan (CS) and algae (food-grade algae, FGA) was cross-linked and loaded onto a ruthenium metal organic framework to create a bio-adsorbent (Ru-MOF@CS/FGA composite sponge) with the aim of adsorbing and eliminating Brilliant green (BG) from aqueous solutions. A range of methods were employed to analyze the Ru-MOF@CS/FGA composite sponge, such as X-ray photoelectron spectroscopy (XPS) for elemental analysis, Fourier transform infrared spectroscopy (FTIR) to ascertain the function groups, and scanning electron microscopy (SEM) to establish the surface morphology, and powder X-ray diffraction (PXRD) to study of single and multi-phase polycrystalline materials. Brunauer-Emmett-Teller surface area (BET) confirmed the adsorbent's high surface area and pore volume (826.
View Article and Find Full Text PDFThis study looked at the doxorubicin hydrochloride (DOX) anticancer drug's adsorption characteristics on a silver-based metal-organic framework (Ag-MOF). X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used for the characterization of Ag-MOF. The pore volume and surface area of Ag-MOF were determined through Brunauer-Emmett-Teller (BET) testing at 77 K to be 0.
View Article and Find Full Text PDFHerein, the fabrication and full characterization of a novel atomoxetine (ATX) voltammetric carbon paste electrode (CPE) fortified with iron oxide nanoparticles (FeONPs) is demonstrated. Modification of the carbon paste matrix with the metallic oxide nanostructure provides proper electrocatalytic activity against the oxidation of ATX molecules at the carbon paste surface, resulting in a noticeable improvement in the performance of the sensor. At the recommended pH value, ATX recorded an irreversible anodic peak at 1.
View Article and Find Full Text PDFPentafluoroaryl analogues have been found to exhibit para specific nucleophilic aromatic substitution (S Ar). Herein, we describe the use of S Ar chemistry to create luminous perfluorinated symmetrical terphenyls. Both of S Ar chemistry and copper(I)-catalysed decarboxylative cross-coupling were applied for the synthesis of the perfluorinated symmetrical terphenyls in high yields from the corresponding derivatives of aryl iodide and potassium salt of fluorobenzoate.
View Article and Find Full Text PDFNovel smart cotton diagnostic assay was developed toward onsite sensing of sweat pH variations for possible medical applications such as drug test and healthcare purposes. Humulus lupulus L. extract was obtained according to previously reported procedure.
View Article and Find Full Text PDFThis paper presents the expansion of an optical, chemical sensor that can rapidly and reliably detect, quantify, and remove Ni(II) ions in oil products and electroplating wastewater sources. The sensor is based on mesoporous silica nanospheres (MSNs) that have an extraordinary surface area, uniform surface morphology, and capacious porosity, making them an excellent substrate for the anchoring of the chromoionophoic probe,3'-{(1E,1' E)-[(4-chloro-1,2 phenylene)bis (azaneylylidene)]-bis(methaneylylidene)}bis(2-hydroxybenzoic acid) (CPAMHP). The CPAMHP probe is highly selective and sensitive to Ni(II), enabling it to be used in naked-eye colorimetric recognition of Ni(II) ions.
View Article and Find Full Text PDFThe present work demonstrated the fabrication and the electrochemical characterization of novel printed electrochemical sensors integrated with an innovative nanosensing platform based on the synergic electrocatalytic effect of iron oxide nanoparticles (FeONPs) and reduced graphene oxide (rGO) for precise voltammetric determination of the antipsychotic drug lurasidone hydrochloride (LUH). The features of the electrode surface fabricated using the ordinary inkjet printer were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Among different ink formulations, integration of the printing ink with the ratio 15 mg FeONPs and 20 mg rGO was found to be the most appropriate for sensitive quantification of LUH in biological fluids and pharmaceutical formulations in the presence of LUH degradation products.
View Article and Find Full Text PDFNovel thermochromic and vapochromic paper substrates were prepared via screen printing with anthocyanin extract in the presence of ferrous sulfate mordant, resulting in multi-stimuli responsive colorimetric paper sheets. Environmentally friendly anthocyanin extract was obtained from red-cabbage (Brassica oleracea var. capitata L.
View Article and Find Full Text PDFSimple and efficient detection and mapping method based on a strong turn-on fluorescent pigment was developed for fingerprint analysis. We present a phosphor powder characterized by strong emission which is useful to achieve better fingerprint detection on multicolored or photoluminescent surfaces, such as currency notes characterized by optically changeable inks and highly fluorescent positions, because it offers better contrast and reduce the difficulty of background interference. Novel photochromic ink was prepared to establish a fingerprinted colorless film onto cellulose documents with green emission for anticounterfeiting applications as illustrated by photoluminescence spectra.
View Article and Find Full Text PDFIn this study, novel fluorescent low molecular-weight organogelators are derived from diphenyl ethers and substituted with para-alkoxy groups of different aliphatic chain lengths. The present research promotes the preparation of innovative nanofeather-like assemblies from the synthesized diphenyl ether-derived organogelators. The gelation performance of the prepared alkoxy-substituted diphenyl ethers was reported.
View Article and Find Full Text PDFThe outstanding biodegradability, biocompatibility, affordability, and renewability of polylactic acid have made it a prominent biomaterial. Herein, an innovative, easy, and eco-friendly technique is used to prepare sodium polylactate (SP)-based nanofibers. Solution blowing spinning (SBS) was used to create fibrous mats of SP and polyvinyl alcohol (PVA).
View Article and Find Full Text PDFNacre structure has aragonite polygonal tablets, tessellated to generate separate layers, and exhibits adjacent layers and tablets within a layer bonded by a biopolymer. Here, we report the development of a nacre-like organic/inorganic hybrid nanocomposite coating consisting of epoxy tablets as well as rare-earth-activated aluminate and graphene oxide tablet/tablet interfaces. The lanthanide-activated aluminate was prepared using a high temperature solid-state approach followed by top-down technology to provide the phosphor nanoparticles (PNPs).
View Article and Find Full Text PDFLong-lasting phosphorescent nacre-like material was simply prepared from a nanocomposite of inorganic and organic materials. Low molecular weight unsaturated polyester (PET), graphene oxide (GO), and nanoparticles of rare-earth activated aluminate pigment were used in the preparation process of an organic/inorganic hybrid nanocomposite. Using methylethylketone peroxide (MEKP) as a hardener, we were able to develop a fluid solution that hardens within minutes at room temperature.
View Article and Find Full Text PDFPersistent bad breath has been reported as a sign of serious diabetes health conditions. If an individual's breath has a strong odor of acetone, it may indicate high levels of ketones in the blood owing to diabetic ketoacidosis. Thus, acetone gas in the breath of patients with diabetes can be detected using the current easy-to-use fluorescent test dipstick.
View Article and Find Full Text PDFPhotochromic materials have attracted broad interest to enhance the anti-counterfeiting of commercial products. In order to develop anti-counterfeiting mechanically reliable composite materials, it is urgent to improve the engineering process of both the material and matrix. Herein, we report on the development of anti-counterfeiting mechanically reliable nanocomposites composed of rare-earth doped aluminate strontium oxide phosphor (RESA) nanoparticles (NPs) immobilized into the thermoplastic polyurethane-based nanofibrous film successfully fabricated via the simple solution blowing spinning technology.
View Article and Find Full Text PDFSimple preparation of flame-retardant, photoluminescent, and superhydrophobic smart nanocomposite coating was developed and applied onto cotton fibres using the simple pad-dry-cure technique. This novel strategy involved the immobilization of rare-earth-doped aluminium strontium oxide (ASO; SrAl O :Eu ,Dy ) nanoparticles, environmentally friendly room temperature vulcanizing silicone rubber (RTV) and environmentally friendly Exolet AP422 (Ex). The fabrics were also able to produce a char film in the fire-resistant assessment, providing fibres with a self-extinguishing characteristic.
View Article and Find Full Text PDFThe salt of Aurintricarboxylic acid (ATA) was utilized in this study to synthesize new alkaline earth metal ion complexes. The analytical results proposed the isolation of mononuclear (Sr&Ba) and binuclear complexes (Mg&Ca). These complexes were analyzed by available analytical and spectral techniques.
View Article and Find Full Text PDF