Publications by authors named "Hana Hayasaki"

Hyaluronan (HA) and its binding molecules, cartilage link protein (LP) and proteoglycan (PG), are structural components of the hydrated extracellular matrix. Because these molecules play important roles in the tumor microenvironment, we examined the distribution of HA, LP, versican, and aggrecan in salivary gland tumors using histochemical and immunohistochemical methods, including double staining. LP was present in pleomorphic adenoma (PA) and adenoid cystic carcinoma (ACC) tissues, and aggrecan was absent in the malignant tumors that we investigated.

View Article and Find Full Text PDF

Radiation necrosis (RN) after intensive radiation therapy is a serious problem. Using human RN specimens, we recently proved that leaky angiogenesis is a major cause of brain edema in RN. In the present study, we investigated the same specimens to speculate on inflammation's effect on the pathophysiology of RN.

View Article and Find Full Text PDF

Nuclear factor-kappaB (NF kappaB) plays a pivotal role in cancer progression. In this study, we developed a decoy cis-element oligo-deoxyribonucleic acid against NF kappaB-binding site (NF kappaB-decoy), which effectively inhibits NF kappaB activity, and tested the effect of combined therapy comprising local transfection of NF kappaB-decoy into the liver and transportal injection of paclitaxel on cancer growth and metastasis using an orthotopic murine model of colon cancer liver metastasis. For NF kappaB-decoy transfection, we employed a novel approach using ultrasound exposure with an echocardiographic contrast agent, Optison.

View Article and Find Full Text PDF

The receptor for hyaluronan mediated motility (RHAMM), which is a hyaluronan-binding protein, is a centrosomal and microtubal protein. Here, we have identified two RHAMM-binding proteins, glucose regulated protein (GRP) 78 and GRP75, using co-immunoprecipitation analysis. These two proteins directly bound to glutathione-S-transferase-RHAMM fusion proteins.

View Article and Find Full Text PDF

gamma-Aminobutyric acid (GABA), which is a major inhibitory neurotransmitter in the brain, is also found in many peripheral nonneuronal tissues, including male reproductive organs. However, the distribution of GABAergic cells in various organs is not known. The GAD67-GFP knock-in mouse is a useful model for studying the distribution and morphology of GABAergic neurons in the brain.

View Article and Find Full Text PDF

Our previous study showed the local production of gamma-aminobutyrate (GABA) in hypertrophic-zone chondrocytes of the rat tibial growth plate, an important long bone growth site. The aim of this study was to identify the presence of GABA receptors in growth plate chondrocytes by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Chondrocytes expressed both GABA(A) and GABA(B) receptor subunit mRNAs as well as the corresponding proteins necessary for the assembly of functional receptors.

View Article and Find Full Text PDF

The receptor for hyaluronan mediated motility (RHAMM), a hyaluronan (HA) binding protein, has been shown to play an important role in the motility and invasiveness of malignant cells. We have developed a polyclonal antibody against human RHAMM. A new polyclonal antibody was raised against a mixture of C-terminal RHAMM, which is capable of binding to HA, and the central domain.

View Article and Find Full Text PDF

Background And Aim: The level of gamma-amino-butyric acid (GABA) is reported to be increased in colon cancer. Moreover, data suggests that GABA plays a role in the proliferation or maturation of some types of cells. We examined the expression of GABA in intramucosal colonic tumors to clarify the relation between GABA and the degree of atypia.

View Article and Find Full Text PDF

Gamma-aminobutyrate (GABA) is a major inhibitory neurotransmitter in the adult mammalian brain. GABA is also considered to be a multifunctional molecule that has different situational functions in the central nervous system, the peripheral nervous system, and in some nonneuronal tissues. GABA is synthesized primarily from glutamate by glutamate decarboxylase (GAD), but alternative pathways may be important under certain situations.

View Article and Find Full Text PDF