Protein engineering with non-canonical amino acids (ncAAs) holds great promises for diverse applications, however, there are still limitations in the implementation of this technology at manufacturing scale. The know-how to efficiently produce ncAA-incorporated proteins in a scalable manner is still very limited. In the present study, we incorporated the ncAA N-[(2-azidoethoxy)carbonyl]-L-lysine (Azk) into an antigen binding fragment (Fab) in Escherichia coli.
View Article and Find Full Text PDFVascular tissue engineering is a promising approach for regenerating damaged blood vessels and developing new therapeutic approaches for heart disease treatment. To date, different sources of cells have been recognized that offer assistance within the recovery of heart supply routes and veins with distinctive capacities and are compelling for heart regeneration. However, some challenges still remain that need to be overcome to establish the full potential application of these cells.
View Article and Find Full Text PDFFunctionalization of proteins by incorporating reactive non-canonical amino acids (ncAAs) has been widely applied for numerous biological and therapeutic applications. The requirement not to lose the intrinsic properties of these proteins is often underestimated and not considered. Main purpose of this study was to answer the question whether functionalization via residue-specific incorporation of the ncAA N-[(2-Azidoethoxy) carbonyl]-l-lysine (Azk) influences the properties of the anti-tumor-necrosis-factor-α-Fab (FTN2).
View Article and Find Full Text PDFOsteochondral defects are defined most typically by damages to both cartilage and subchondral bone tissue. It is challenging to develop bilayered scaffolds that regenerate both of these lineages simultaneously. In the present study, an electrospun bilayer nanofibrous scaffold was designed to repair osteochondral lesions.
View Article and Find Full Text PDFApplication of hyperosmolarity can be a promising strategy to promote chondrogenic differentiation in adipose-derived mesenchymal stem cells (ADSCs). Growth factors may promote different signaling pathways in parallel that is why in this study we monitor undesired pathologic or unwanted side effects as well as chondroinductive impacts of hyperosmolarity in differentiating ADSCs. Quantified gene expression, immunocytochemistry, glycosaminoglycan deposition and angiogenic secretion assays performed along with immunoassay.
View Article and Find Full Text PDFConstruction of scaffolds which are similar to natural niches regarding both biochemical composition and mechanical characteristics has gained great attention in the field of tissue engineering. However, application of natural polymers, such as hyaluronic acid, is challenging in construction of scaffolds due to physicochemical properties, difficult to use in electrospinning and low cell adhesion rate. In this study, HA was acetylated to make it soluble in high polarity solvent and blended with PCL for construction of nanofibrous composite (ac-HA/PCL) scaffolds.
View Article and Find Full Text PDFCardiovascular diseases, among all diseases, are taking the most victims worldwide. Coronary artery occlusion, takes responsibility of about 30% of the yearly global deaths in the world (Heart Disease and Stroke Statistics 2017 At-a-Glance, 2017), raising the need for viable substitutes for cardiovascular tissues. Depending on a number of factors, blocked coronary arteries are now being replaced by autografts or stents.
View Article and Find Full Text PDF: There are different methods to develop neo-chondral tissues from adipose-derived stem cells (ADSCs). Application of electromagnetic field (EMF) on ADSCs is one of popular approaches, which results in chondrogenesis. If chondrogenic impact of EMF on ADSCs is supposed to be generalized as a protocol in translational medicine field, possible emergence of early or late hypertrophic maturation, mineralization and inflammatory side effects in chondrogenically differentiating ADSCs should be considered.
View Article and Find Full Text PDFTransforming growth factor-beta (TGF-β) is known as standard chondrogenic differentiation agent, even though it comes with undesirable side effects such as early hypertrophic maturation, mineralization, and secretion of inflammatory/angiogenic factors. On the other hand, platelet-rich plasma (PRP) is found to have a chondrogenic impact on mesenchymal stem cell proliferation and differentiation, with no considerable side effects. Therefore, we compared chondrogenic impact of TGF-β and PRP on adipose-derived stem cells (ADSCs), to see if PRP could be introduced as an alternative to TGF-β.
View Article and Find Full Text PDFAs the incidence of small-diameter vascular graft (SDVG) occlusion is considerably high, a great amount of research is focused on constructing a more biocompatible graft. The absence of a biocompatible surface in the lumen of the engineered grafts that can support confluent lining with endothelial cells (ECs) can cause thrombosis and graft failure. Blood clot formation is mainly because of the lack of an integrated endothelium.
View Article and Find Full Text PDFRecent developments in bone tissue engineering have paved the way for more efficient and cost-effective strategies. Additionally, utilization of autologous sources has been considered very desirable and is increasingly growing. Recently, activated platelet rich plasma (PRP) has been widely used in the field of bone tissue engineering, since it harbours a huge number of growth factors that can enhance osteogenesis and bone regeneration.
View Article and Find Full Text PDFIn bone tissue engineering, bioceramics are of the most widely used materials for treatment of bone defects clinically. The composites of bioceramic/polymer fibrous scaffolds have been designed and developed to fulfill the mechanical and biological requirements of the damaged tissue. In the present study, oyster shell (OS) as a bioceramic in combination with the biodegradable and biocompatible poly (l-lactide) has been used to prepare a new tissue-engineered composite.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
February 2018
Stem cells' fate during in vitro differentiation is influenced by biophysicochemical cues. Osmotic stress has proved to enhance chondrocyte marker expression, however its potent negative impacts had never been surveyed. We questioned whether specific osmotic conditions, regarding the osmolyte agent, could benefit chondrogenesis while dampening undesired concomitant hypertrophy and inflammatory responses.
View Article and Find Full Text PDFBackground: Despite significant achievements in the field of tissue engineering, simplification and improvement of the existing protocols are of great importance. The use of complex differentiation media, due to the presence of multiple factors, may have some undesired effects on cell health and functions. Thus, minimizing the number of involved factors, while maintaining the differentiation efficiency, provides less costly and controllable conditions.
View Article and Find Full Text PDFMesenchymal stem cells (MSC) from bone marrow hold great potential as a cell source for cartilage repair. The objective of our study was differentiation of MSC toward chondrocyte by using Nanofiber-based polyethersulfone (PES) scaffold and also enhanced chondrogenic differentiation of BMSC in vitro. MSCs were harvested from bone marrow of human and PES scaffold was fabricated via Electrospinning.
View Article and Find Full Text PDFAppl Biochem Biotechnol
June 2018
The inductive effects of increased osmolarity on chondrogenesis are well approved. However, the effects of the osmolyte agent invoked to induce hyperosmolarity are largely neglected. Herein, we scrutinized how hyperosmotic conditions acquired by addition of different osmolytes would impact chondrogenesis.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (iPSCs) have been shown to have promising potential for regenerative medicine and tissue engineering applications. Chondrogenic differentiation of iPSCs is important for application in cartilage tissue engineering. In this study, we considered the effect of nanofibre-based polyethersulfone (PES) scaffold on the chondrogenesis of iPSCs.
View Article and Find Full Text PDFMesenchymal stem cells are widely stimulated by transforming growth factor beta-3 (TGFβ3) for chondrocyte differentiation. The objective of our study was to establish a new method for differentiation of human mesenchymal stem cells toward chondrocyte by overexpression of MicroRNA-140 (miR-140), and also this method was compared with method of induction with TGFβ3 in high-cell density culture systems. Mesenchymal stem cells were harvested from bone marrow of human.
View Article and Find Full Text PDFRegarding the inadequate healing capability of cartilage tissue, cell-based therapy is making the future of cartilage repair and regeneration. Mesenchymal stem cells (MSC) have shown great promise in cartilage regeneration. However, a yet-unresolved issue is the emergence of hypertrophic and pathologic markers during MSC chondrogenesis.
View Article and Find Full Text PDFRecently, tissue engineering has become one of the most important approaches in medical research for the treatment of injuries and lesions. In the present study, poly(l-lactide) acid (PLLA), and polyethylene glycol (PEG) with different ratios and PEG molecular weights were used in order to produce appropriate nanofibrous scaffolds using the electrospinning technique for cartilage tissue engineering applications. Glucosamine was also incorporated into the polymeric scaffolds to enhance the biological properties.
View Article and Find Full Text PDFThe increasing demand for biocompatible bone substitutes has made it a priority to tissue engineering and regenerative medicine scientists. Combination of minerals, growth factors, and extracellular matrix (ECM) proteins with nanofibrous scaffolds is a potential promising strategy for bone reconstruction and clinical applications. In this study, nanohydroxyapatite (nHA) was incorporated in electrospun nanofibrous polycaprolactone (PCL) scaffolds coated with fibronectin (Fn).
View Article and Find Full Text PDFOne of the advances in the field of biomedical nanotechnology, is conductive nanofiber fabrication and the discovery of its applications. Biocompatible flexible nanofibers that have a good biocompatibility, mechanical properties and morphology. Poly (3, 4-ethylene dioxythiophene) (PEDOT) is a conductive polymer that has recently been used in medical applications.
View Article and Find Full Text PDFBackground: Optimization of the differentiation medium through using autologous factors such as PRP is of great consideration, but due to the complex, variable and undefined composition of PRP on one hand and lack of control over the absolute regulatory mechanisms in in vitro conditions or disrupted and different mechanisms in diseased tissue microenvironments in in vivo conditions on the other hand, it is complicated and rather unpredictable to get the desired effects of PRP making it inevitable to monitor the possible pathologic or undesired differentiation pathways and therapeutic effects of PRP. Therefore, in this study the probable potential of PRP on inducing calcification, inflammation and angiogenesis in chondrogenically-differentiated cells was investigated.
Methods: The expressions of chondrogenic, inflammatory, osteogenic and angiogenic markers from TGFβ or PRP-treated cells during chondrogenic differentiation of human adipose-derived stem cells (ADSCs) was evaluated.