Publications by authors named "Hana Bavlovic-Piskackova"

Background: Microsampling of biological fluids followed by innovative sample pre-treatment reflects trends in bioanalytical chemistry. Volumetric absorptive microsampling (VAMS) enables exact whole blood volume collection and reduces the impact of hematocrit on the assay. In animal studies, it complies with the 3R principles (refine, reduce, replace).

View Article and Find Full Text PDF

Anthracyclines, such as doxorubicin (adriamycin), daunorubicin, or epirubicin, rank among the most effective agents in classical anticancer chemotherapy. However, cardiotoxicity remains the main limitation of their clinical use. Topoisomerase IIβ has recently been identified as a plausible target of anthracyclines in cardiomyocytes.

View Article and Find Full Text PDF

Ixazomib is the only orally active proteasome inhibitor used in clinical practice as an anticancer drug. The novel, rapid UHPLC-UV assay for ixazomib was developed and applied to the forced degradation study followed by HRMS identification of the main degradation products. Oxidative deboronation and hydrolysis of the amid bond were found to be the principal degradation pathways.

View Article and Find Full Text PDF

Breast milk analysis provides useful information about acute newborn exposure to harmful substances, such as psychoactive drugs abused by a nursing mother. Since breast milk represents a complex matrix with large amounts of interfering compounds, a comprehensive sample pre-treatment is necessary. This work focuses on determination of amphetamines and synthetic cathinones in human breast milk by microextraction techniques (liquid-phase microextraction and electromembrane extraction), and their comparison to more conventional treatment methods (protein precipitation, liquid-liquid extraction, and salting-out assisted liquid-liquid extraction).

View Article and Find Full Text PDF

Background: Anthracycline-induced heart failure has been traditionally attributed to direct iron-catalyzed oxidative damage. Dexrazoxane (DEX)-the only drug approved for its prevention-has been believed to protect the heart via its iron-chelating metabolite ADR-925. However, direct evidence is lacking, and recently proposed TOP2B (topoisomerase II beta) hypothesis challenged the original concept.

View Article and Find Full Text PDF

The reliable analysis of various compounds from tissue requires a tedious sample preparation. The sample pretreatment usually involves proper homogenization that facilitates extraction of target analytes, followed by an appropriate sample clean-up preventing matrix effects. Electromembrane extraction (EME) seems to have a significant potential to streamline the whole procedure.

View Article and Find Full Text PDF

Cardioprotective activity of dexrazoxane (ICRF-187), the only clinically approved drug against anthracycline-induced cardiotoxicity, has traditionally been attributed to its iron-chelating metabolite. However, recent experimental evidence suggested that the inhibition and/or depletion of topoisomerase IIβ (TOP2B) by dexrazoxane could be cardioprotective. Hence, we evaluated a series of dexrazoxane analogues and found that their cardioprotective activity strongly correlated with their interaction with TOP2B in cardiomyocytes, but was independent of their iron chelation ability.

View Article and Find Full Text PDF

The bisdioxopiperazine topoisomerase IIβ inhibitor ICRF-193 has been previously identified as a more potent analog of dexrazoxane (ICRF-187), a drug used in clinical practice against anthracycline cardiotoxicity. However, the poor aqueous solubility of ICRF-193 has precluded its further in vivo development as a cardioprotective agent. To overcome this issue, water-soluble prodrugs of ICRF-193 were prepared, their abilities to release ICRF-193 were investigated using a novel UHPLC-MS/MS assay, and their cytoprotective effects against anthracycline cardiotoxicity were tested in vitro in neonatal ventricular cardiomyocytes (NVCMs).

View Article and Find Full Text PDF

Electromembrane extraction (EME) of the polar zwitterionic drugs, anthracyclines (ANT, doxorubicin, daunorubicin and its metabolite daunorubicinol), from rabbit plasma was investigated. The optimized EME was compared to conventional sample pretreatment techniques such as protein precipitation (PP) and liquid-liquid extraction (LLE), mainly in terms of extraction reliability, recovery and matrix effect. In addition, phospholipids profile in the individual extracts was evaluated.

View Article and Find Full Text PDF

Bisdioxopiperazine agent dexrazoxane (ICRF-187) has been the only effective and approved drug for prevention of chronic anthracycline cardiotoxicity. However, the structure-activity relationships (SARs) of its cardioprotective effects remain obscure owing to limited investigation of its derivatives/analogs and uncertainties about its mechanism of action. To fill these knowledge gaps, we tested the hypothesis that dexrazoxane derivatives exert cardioprotection via metal chelation and/or modulation of topoisomerase II (Top2B) activity in chronic anthracycline cardiotoxicity.

View Article and Find Full Text PDF

Sobuzoxane (MST-16) is an approved anticancer agent, a pro-drug of bisdioxopiperazine analog ICRF-154. Due to the structural similarity of ICRF-154 to dexrazoxane (ICRF-187), MST-16 deserves attention as a cardioprotective drug. This study presents for the first time UHPLC-MS/MS assay of MST-16, ICRF-154 and its metabolite (EDTA-diamide) in cell culture medium, buffer, plasma and cardiac cells and provides data on MST-16 bioactivation under conditions relevant to investigation of cardioprotection of this drug.

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is an alternative method to dialysis and ultrafiltration for the determination of plasma protein binding (PPB) of drugs. It is particularly advantageous for complicated analytes where standard methods are not applicable. Di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) is a lead compound of novel thiosemicarbazone anti-cancer drugs, which entered clinical trials in 2016.

View Article and Find Full Text PDF