Publications by authors named "HanXiao Jiang"

Outbreaks of acute respiratory viral diseases, such as influenza and COVID-19 caused by influenza A virus (IAV) and SARS-CoV-2, pose a serious threat to global public health, economic security, and social stability. This calls for the development of broad-spectrum antivirals to prevent or treat infection or co-infection of IAV and SARS-CoV-2. Hemagglutinin (HA) on IAV and spike (S) protein on SARS-CoV-2, which contain various types of glycans, play crucial roles in mediating viral entry into host cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid‑β (Aβ) in the brain. The gut/brain axis may serve a role in AD pathogenesis. The present study investigated deposition of Aβ in the intestinal epithelium and its potential effects on intestinal barrier function in a transgenic mouse model of AD.

View Article and Find Full Text PDF

Introduction: Protein O-linked mannose β1,2--acetylglucosaminyltransferase 1 (POMGNT1) is crucial for the elongation of O-mannosyl glycans. Mutations in POMGNT1 cause muscle-eye-brain (MEB) disease, one of the main features of which is anatomical aberrations in the brain. A growing number of studies have shown that defects in POMGNT1 affect neuronal migration and distribution, disrupt basement membranes, and misalign Cajal-Retzius cells.

View Article and Find Full Text PDF

Neurexin-3 is primarily localized in the presynaptic membrane and forms complexes with various ligands located in the postsynaptic membrane. Neurexin-3 has important roles in synapse development and synapse functions. Neurexin-3 mediates excitatory presynaptic differentiation by interacting with leucine-rich-repeat transmembrane neuronal proteins.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is pathologically characterized by senile plaques and neurofibrillary tangles composed of β-amyloid peptide (Aβ) and tau hyperphosphorylation, respectively. Mannosylation, a particular type of posttranslational modification, may be involved in the pathogenesis of AD. However, its underlying mechanism remains unclear.

View Article and Find Full Text PDF

The industrial synthetic biology sector has made huge investments to achieve relevant miniaturized screening systems for scalable fermentation. Here we present the first example of a high-throughput (>10 genotypes per week) perfusion-based screening system to improve small-molecule secretion from microbial strains. Using the Berkeley Lights Beacon® system, the productivity of each strain could be directly monitored in real time during continuous culture, yielding phenotypes that correlated strongly (r > 0.

View Article and Find Full Text PDF

For commercial protein therapeutics, Chinese hamster ovary (CHO) cells have an established history of safety, proven capability to express a wide range of therapeutic proteins and high volumetric productivities. Expanding global markets for therapeutic proteins and increasing concerns for broadened access of these medicines has catalyzed consideration of alternative approaches to this platform. Reaching these objectives likely will require an order of magnitude increase in volumetric productivity and a corresponding reduction in the costs of manufacture.

View Article and Find Full Text PDF

A bio-based economy has the potential to provide sustainable substitutes for petroleum-based products and new chemical building blocks for advanced materials. We previously engineered Saccharomyces cerevisiae for industrial production of the isoprenoid artemisinic acid for use in antimalarial treatments. Adapting these strains for biosynthesis of other isoprenoids such as β-farnesene (CH), a plant sesquiterpene with versatile industrial applications, is straightforward.

View Article and Find Full Text PDF

Cinnamate 4-hydroxylase (C4H), a monooxygenase in the plant phenylpropanoid pathway, was assayed for its ability to hydroxylate 29 substrate analogues. Nine of the tested analogues with various aromatic side chains, including 3-coumaric acid, were metabolized by C4H. Seven products from these reactive analogues were characterized using LC/MS, 1H NMR and 13C NMR spectroscopic analysis.

View Article and Find Full Text PDF

Flavonoids are valuable natural products derived from the phenylpropanoid pathway. The objective of this study was to create a host for the biosynthesis of naringenin, the central precursor of many flavonoids. This was accomplished by introducing the phenylpropanoid pathway with the genes for phenylalanine ammonia lyase (PAL) from Rhodosporidium toruloides, 4-coumarate:coenzyme A (CoA) ligase (4CL) from Arabidopsis thaliana, and chalcone synthase (CHS) from Hypericum androsaemum into two Saccharomyces cerevisiae strains, namely, AH22 and a pad1 knockout mutant.

View Article and Find Full Text PDF

Cytochrome P450s are heme-thiolate oxygenases involved in a wide number of reactions such as epoxidation, hydroxylation, and demethylation. Heterologously expressed eukaryotic P450s are potentially useful biocatalysts for stereospecific oxygenation reactions under mild conditions. Numerous factors, such as intracellular pH, cytochrome P450, cytochrome P450 reductase, NADPH, and oxygen concentration all influence the in vivo activity.

View Article and Find Full Text PDF