IEEE Trans Vis Comput Graph
September 2024
In the biomedical domain, visualizing the document embeddings of an extensive corpus has been widely used in informationseeking tasks. However, three key challenges with existing visualizations make it difficult for clinicians to find information efficiently. First, the document embeddings used in these visualizations are generated statically by pretrained language models, which cannot adapt to the user's evolving interest.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
September 2024
Feature grid Scene Representation Networks (SRNs) have been applied to scientific data as compact functional surrogates for analysis and visualization. As SRNs are black-box lossy data representations, assessing the prediction quality is critical for scientific visualization applications to ensure that scientists can trust the information being visualized. Currently, existing architectures do not support inference time reconstruction quality assessment, as coordinate-level errors cannot be evaluated in the absence of ground truth data.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
September 2024
Existing deep learning-based surrogate models facilitate efficient data generation, but fall short in uncertainty quantification, efficient parameter space exploration, and reverse prediction. In our work, we introduce SurroFlow, a novel normalizing flow-based surrogate model, to learn the invertible transformation between simulation parameters and simulation outputs. The model not only allows accurate predictions of simulation outcomes for a given simulation parameter but also supports uncertainty quantification in the data generation process.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2024
Implicit Neural representations (INRs) are widely used for scientific data reduction and visualization by modeling the function that maps a spatial location to a data value. Without any prior knowledge about the spatial distribution of values, we are forced to sample densely from INRs to perform visualization tasks like iso-surface extraction which can be very computationally expensive. Recently, range analysis has shown promising results in improving the efficiency of geometric queries, such as ray casting and hierarchical mesh extraction, on INRs for 3D geometries by using arithmetic rules to bound the output range of the network within a spatial region.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2024
Although many deep-learning-based super-resolution approaches have been proposed in recent years, because no ground truth is available in the inference stage, few can quantify the errors and uncertainties of the super-resolved results. For scientific visualization applications, however, conveying uncertainties of the results to scientists is crucial to avoid generating misleading or incorrect information. In this paper, we propose PSRFlow, a novel normalizing flow-based generative model for scientific data super-resolution that incorporates uncertainty quantification into the super-resolution process.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2024
Scene representation networks (SRNs) have been recently proposed for compression and visualization of scientific data. However, state-of-the-art SRNs do not adapt the allocation of available network parameters to the complex features found in scientific data, leading to a loss in reconstruction quality. We address this shortcoming with an adaptively placed multi-grid SRN (APMGSRN) and propose a domain decomposition training and inference technique for accelerated parallel training on multi-GPU systems.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
August 2024
While a multitude of studies have been conducted on graph drawing, many existing methods only focus on optimizing a single aesthetic aspect of graph layouts, which can lead to sub-optimal results. There are a few existing methods that have attempted to develop a flexible solution for optimizing different aesthetic aspects measured by different aesthetic criteria. Furthermore, thanks to the significant advance in deep learning techniques, several deep learning-based layout methods were proposed recently.
View Article and Find Full Text PDFIEEE Comput Graph Appl
May 2023
The Internet of Food (IoF) is an emerging field in smart foodsheds, involving the creation of a knowledge graph (KG) about the environment, agriculture, food, diet, and health. However, the heterogeneity and size of the KG present challenges for downstream tasks, such as information retrieval and interactive exploration. To address those challenges, we propose an interactive knowledge and learning environment (IKLE) that integrates three programming and modeling languages to support multiple downstream tasks in the analysis pipeline.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
June 2023
Public opinion surveys constitute a widespread, powerful tool to study peoples' attitudes and behaviors from comparative perspectives. However, even global surveys can have limited geographic and temporal coverage, which can hinder the production of comprehensive knowledge. To expand the scope of comparison, social scientists turn to ex-post harmonization of variables from datasets that cover similar topics but in different populations and/or at different times.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
March 2024
Many Information Retrieval (IR) approaches have been proposed to extract relevant information from a large corpus. Among these methods, phrase-based retrieval methods have been proven to capture more concrete and concise information than word-based and paragraph-based methods. However, due to the complex relationship among phrases and a lack of proper visual guidance, achieving user-driven interactive information-seeking and retrieval remains challenging.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2024
A systematic review (SR) is essential with up-to-date research evidence to support clinical decisions and practices. However, the growing literature volume makes it challenging for SR reviewers and clinicians to discover useful information efficiently. Many human-in-the-loop information retrieval approaches (HIR) have been proposed to rank documents semantically similar to users' queries and provide interactive visualizations to facilitate document retrieval.
View Article and Find Full Text PDFWe present a novel technique for hierarchical super resolution (SR) with neural networks (NNs), which upscales volumetric data represented with an octree data structure to a high-resolution uniform gridwith minimal seam artifacts on octree node boundaries. Our method uses existing state-of-the-art SR models and adds flexibility to upscale input data with varying levels of detail across the domain, instead of only uniform grid data that are supported in previous approaches.The key is to use a hierarchy of SR NNs, each trained to perform 2× SR between two levels of detail, with a hierarchical SR algorithm that minimizes seam artifacts by starting from the coarsest level of detail and working up.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2023
We propose VDL-Surrogate, a view-dependent neural-network-latent-based surrogate model for parameter space exploration of ensemble simulations that allows high-resolution visualizations and user-specified visual mappings. Surrogate-enabled parameter space exploration allows domain scientists to preview simulation results without having to run a large number of computationally costly simulations. Limited by computational resources, however, existing surrogate models may not produce previews with sufficient resolution for visualization and analysis.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2023
Deep learning based latent representations have been widely used for numerous scientific visualization applications such as isosurface similarity analysis, volume rendering, flow field synthesis, and data reduction, just to name a few. However, existing latent representations are mostly generated from raw data in an unsupervised manner, which makes it difficult to incorporate domain interest to control the size of the latent representations and the quality of the reconstructed data. In this paper, we present a novel importance-driven latent representation to facilitate domain-interest-guided scientific data visualization and analysis.
View Article and Find Full Text PDFWe propose GNN-Surrogate, a graph neural network-based surrogate model to explore the parameter space of ocean climate simulations. Parameter space exploration is important for domain scientists to understand the influence of input parameters (e.g.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
July 2023
Feature related particle data analysis plays an important role in many scientific applications such as fluid simulations, cosmology simulations and molecular dynamics. Compared to conventional methods that use hand-crafted feature descriptors, some recent studies focus on transforming the data into a new latent space, where features are easier to be identified, compared and extracted. However, it is challenging to transform particle data into latent representations, since the convolution neural networks used in prior studies require the data presented in regular grids.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
June 2023
We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a work donation algorithm, (2) a high-order workload estimation model, and (3) a communication cost model. First, we design an RL-based work donation algorithm.
View Article and Find Full Text PDFCdc42, a conserved Rho GTPase, plays a central role in polarity establishment in yeast and animals. Cell polarity is critical for asymmetric cell division, and asymmetric cell division underlies replicative aging of budding yeast. Yet how Cdc42 and other polarity factors impact life span is largely unknown.
View Article and Find Full Text PDFIEEE Comput Graph Appl
December 2021
We propose STSRNet, a joint space-time super-resolution deep learning based model for time-varying vector field data. Our method is designed to reconstruct high temporal resolution and high spatial resolution vector fields sequence from the corresponding low-resolution key frames. For large scale simulations, only data from a subset of time steps with reduced spatial resolution can be stored for post hoc analysis.
View Article and Find Full Text PDFIEEE Comput Graph Appl
September 2021
In the past decades, many graph drawing techniques have been proposed for generating aesthetically pleasing graph layouts. However, it remains a challenging task since different layout methods tend to highlight different characteristics of the graphs. Recently, studies on deep-learning-based graph drawing algorithms have emerged but they are often not generalizable to arbitrary graphs without retraining.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
June 2021
We present a novel distributed union-find algorithm that features asynchronous parallelism and k-d tree based load balancing for scalable visualization and analysis of scientific data. Applications of union-find include level set extraction and critical point tracking, but distributed union-find can suffer from high synchronization costs and imbalanced workloads across parallel processes. In this study, we prove that global synchronizations in existing distributed union-find can be eliminated without changing final results, allowing overlapped communications and computations for scalable processing.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
August 2021
We present the Feature Tracking Kit (FTK), a framework that simplifies, scales, and delivers various feature-tracking algorithms for scientific data. The key of FTK is our simplicial spacetime meshing scheme that generalizes both regular and unstructured spatial meshes to spacetime while tessellating spacetime mesh elements into simplices. The benefits of using simplicial spacetime meshes include (1) reducing ambiguity cases for feature extraction and tracking, (2) simplifying the handling of degeneracies using symbolic perturbations, and (3) enabling scalable and parallel processing.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
September 2021
We present the VIS30K dataset, a collection of 29,689 images that represents 30 years of figures and tables from each track of the IEEE Visualization conference series (Vis, SciVis, InfoVis, VAST). VIS30K's comprehensive coverage of the scientific literature in visualization not only reflects the progress of the field but also enables researchers to study the evolution of the state-of-the-art and to find relevant work based on graphical content. We describe the dataset and our semi-automatic collection process, which couples convolutional neural networks (CNN) with curation.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2021
Convolutional neural networks (CNNs) have demonstrated extraordinarily good performance in many computer vision tasks. The increasing size of CNN models, however, prevents them from being widely deployed to devices with limited computational resources, e.g.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
March 2022
Viscous and gravitational flow instabilities cause a displacement front to break up into finger-like fluids. The detection and evolutionary analysis of these fingering instabilities are critical in multiple scientific disciplines such as fluid mechanics and hydrogeology. However, previous detection methods of the viscous and gravitational fingers are based on density thresholding, which provides limited geometric information of the fingers.
View Article and Find Full Text PDF