Asymmetric synthesis of chiral epichlorohydrin (ECH) from 1,3-dichloro-2-propanol (1,3-DCP) using halohydrin dehalogenases (HHDHs) is of great value due to the 100% theoretical yield and high enantioselectivity. The vital problem in the asymmetric synthesis is to prepare optically pure ECH. In this study, key amino acid residues located at halide ion channels of HheC (P175S/W249P) (HheC) were modified to regulate the kinetic parameters.
View Article and Find Full Text PDFAsymmetric synthesis of chiral epichlorohydrin (ECH) from 1,3-dichloro-2-propanol (1,3-DCP) using halohydrin dehalogenase (HHDH) is of great value due to the 100% theoretical yield and high enantioselectivity. In this study, HheC (P175S/W249P) was immobilized on an A502Ps resin and used for the preparation of (S)-ECH. In aqueous system, the immobilized HheC catalyzed the biosynthesis of (S)-ECH with 83.
View Article and Find Full Text PDF