Publications by authors named "Han-Xian Hu"

The translocation of polymers through nanopores is a complex process influenced by various factors. In this study, the translocation behavior of a two-dimensional active polymer chain, comprised of a head active Brownian particle (ABP) and a tail passive polymer chain, through a nanopore is studied using Langevin dynamics simulations. Results show that the effect of the self-propulsion force of the ABP on the translocation differs significantly from the driving force inside the pore for traditional polymer translocations.

View Article and Find Full Text PDF

The adsorption of active polymers on an attractive nanoparticle (NP) is studied using Langevin dynamics simulations. The active polymers consist of an active Brownian particle (ABP) at the head and a subsequent passive polymer chain. The ABP experiences an active force of magnitude .

View Article and Find Full Text PDF

The dynamics of a two-dimensional active polymer composed of an active Brownian particle (ABP) at the head and a passive polymer chain is investigated using Langevin dynamics simulation. The ABP experiences a self-propulsion force and a resistance torque as the passive polymer chain is bonded to the edge of the ABP. restricts the rotation of the ABP, and thus the dynamics of the ABP and that of the whole active polymer are influenced significantly.

View Article and Find Full Text PDF