Publications by authors named "Han-Wen Guo"

Diabetes is a serious disease whose patients often require long-term care. Blood glucose and intermediate glycation product of glycated hemoglobin (HbA1c) are, at best, surrogate biomarkers of disease progression. There is indication that advanced glycation end products (AGEs) better reflect diabetic risks.

View Article and Find Full Text PDF

In nonlinear optical imaging of biological specimens, more than half of the generated luminescence signal is lost, when signal collection is performed in the epi-illuminated geometry. In this study, we enhanced the collected luminescence signal by the use of alternating multiply-coated layers of tantalum pentoxide (Ta2O5) and silicon dioxide (SiO2) on standard microscope cover glasses that has high transmission in the near-infrared wavelength region and high reflection of the visible, luminescence signal. Our coating is biocompatible, allows visual examination of the specimens and optimize collection of the luminescence signal.

View Article and Find Full Text PDF

Background: The treatment of gliomas poses significant clinical challenges due to resistance to chemo and radiation therapy, and treatment side effects. Metronomic photodynamic therapy (mPDT), which involves long treatment time with low fluence rate and multiple or continuous photosensitizer administrations, has potential in treating gliomas without threatening the quality of life and has been demonstrated in rats and rabbits. mPDT in small animals such as mouse is not yet shown due to lack of lightweight illumination device for long periods of time.

View Article and Find Full Text PDF

Reduced nicotinamide adenine dinucleotide (NADH) fluorescence lifetime has been broadly used as a metabolic indicator for stem cell imaging. However, the direct relationship between NADH fluorescence lifetime and metabolic pathway and activity remains to be clarified. In this study, we measured the NADH fluorescence lifetime of human mesenchymal stem cells (hMSCs) as well as the metabolic indictors, such as adenosine triphosphate (ATP) level, oxygen consumption, and lactate release, up to 4 weeks under normal osteogenic differentiation and oxidative phosphorylation-attenuated/inhibited differentiation by oligomycin A (OA) treatment.

View Article and Find Full Text PDF

Fractional photothermolysis (FP) induces discrete columns of photothermal damage in skin dermis, thereby promoting collagen regeneration. This technique has been widely used for treating wrinkles, sun damage, and scar. In this study, we evaluate the potential of multiphoton microscopy as a noninvasive imaging modality for the monitoring of skin rejuvenation following FP treatment.

View Article and Find Full Text PDF

Noninvasive detection of cell death has the potential for definitive diagnosis and monitoring treatment outcomes in real time. Reduced nicotinamide adenine dinucleotide (NADH) fluorescence intensity has long been used as a noninvasive optical probe of metabolic states. NADH fluorescence lifetime has recently been studied for its potential as an alternative optical probe of cellular metabolic states and cell death.

View Article and Find Full Text PDF

In vivo noninvasive detection of apoptosis represents a new tool that may yield a more definite diagnosis, a more accurate prognosis, and help improve therapies for human diseases. The intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (NADH) may be a potential optical biomarker for the apoptosis detection because NADH is involved in the respiration for the mitochondrial membrane potential (ΔΨ) formation and adenosine-5'-triphosphate (ATP) synthesis, and the depletion of ΔΨ and ATP level is the hallmark of apoptosis. We have previously observed the NADH fluorescence lifetime change is associated with staurosporine (STS)-induced mitochondria-mediated apoptosis.

View Article and Find Full Text PDF

NADH/FAD fluorescence spectroscopy/imaging is an extremely useful tool to probe cellular metabolism and has been applied in the clinic such as early cancer detection. Recently, the potential of using NADH/FAD fluorescence as a biomarker to detect cell death has been investigated for development of cancer treatments with higher efficacy. This review aims to provide the updated information in cell death detection using the NADH/FAD fluorescence spectroscopy and imaging based on measurement of the intensity or lifetime of NADH or FAD fluorescence.

View Article and Find Full Text PDF

Direct monitoring of cell death (i.e., apoptosis and necrosis) during or shortly after treatment is desirable in all cancer therapies to determine the outcome.

View Article and Find Full Text PDF

The metabolic changes of human mesenchymal stem cells (hMSCs) during osteogenic differentiation were accessed by reduced nicotinamide adenine dinucleotide (NADH) fluorescence lifetime. An increase in mean fluorescence lifetime and decrease in the ratio between free NADH and protein-bound NADH correlated with our previously reported increase in the adenosine triphosphate (ATP) level of hMSCs during differentiation. These findings suggest that NADH fluorescence lifetime may serve as a new optical biomarker for noninvasive selection of stem cells from differentiated progenies.

View Article and Find Full Text PDF