Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
November 2023
The objective was to establish a robust and reliable approach for the characterisation of volatile organic compounds (VOCs) present in food contact paperboard. This was achieved through the utilisation of headspace solid-phase microextraction in tandem with comprehensive two-dimensional (2D) gas chromatography (GC) and quadrupole time-of-flight mass spectrometry (HS-SPME-GC × GC-QTOF-MS). The experimental parameters were optimised, involving the use of a DVB/C-WR/PDMS fibre at a temperature of 80 °C for a duration of 30 min.
View Article and Find Full Text PDFDouble perovskites (DPs) are one of the most promising candidates for developing white light-emitting diodes (WLEDs) owing to their intrinsic broadband emission from self-trapped excitons (STEs). Translation of three-dimensional (3D) DPs to one-dimensional (1D) analogues, which could break the octahedral tolerance factor limit, is so far remaining unexplored. Herein, by employing a fluorinated organic cation, we report a series of highly luminescent 1D DP-inspired materials, (DFPD) M InBr (DFPD=4,4-difluoropiperidinium, M =K and Rb ).
View Article and Find Full Text PDFMixed-halide (Cl and Br) perovskite nanocrystals (NCs) are of particular interest because they hold great potential for use in high-efficiency blue light-emitting diodes (LEDs). Generally, mixed-halide compounds are obtained by either a one-step synthesis with simultaneous addition of both halide precursors or a postsynthetic anion exchange using the opposite halogen. However, both strategies fail to prevent the formation of deep-level Cl vacancy defects, rendering the photoluminescence quantum yields (PLQYs) typically lower than 30%.
View Article and Find Full Text PDFSingle-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs AgInCl emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity.
View Article and Find Full Text PDFThe three-precursors approach has proven to be advantageous for obtaining high-quality metal halide perovskite nanocrystals (PNCs). However, the current halide precursors of choice are mainly limited to those highly toxic organohalides, being unfavorable for large-scale and sustainable use. Moreover, most of the resulting PNCs still suffer from low quality in terms of photoluminescence quantum yield (PLQY).
View Article and Find Full Text PDFFor inorganic semiconductor nanostructure, excitons in the triplet states are known as the "dark exciton" with poor emitting properties, because of the spin-forbidden transition. Herein, we report a design principle to boost triplet excitons photoluminescence (PL) in all-inorganic lead-free double-perovskite nanocrystals (NCs). Our experimental data reveal that singlet self-trapped excitons (STEs) experience fast intersystem crossing (80 ps) to triplet states.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is a highly invasive and aggressive malignant glioma. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma, so more effective strategies of antitumor treatments are in urgent demand. Here, we found that lysosomal sulfatase expression was significantly correlated with poor prognosis of GBM.
View Article and Find Full Text PDFThe applications of most fluorescent probes available for Glutathione -Transferases (GSTs), including which we developed recently based on 1,8-naphthalimide (), are limited by their short emission wavelengths due to insufficient penetration. To realize imaging at a deeper depth, near-infrared (NIR) fluorescent probes are required. Here we report for the first time the designing of NIR fluorescent probes for GSTs by employing the NIR fluorophore which possesses a higher brightness, hydrophilicity and electron-deficiency relative to .
View Article and Find Full Text PDFGlutathione S-transferases (GSTs), detoxification enzymes that catalyze the addition of glutathione (GSH) to diverse electrophilic molecules, are often overexpressed in various tumor cells. While fluorescent probes for GSTs have often adopted the 2,4-dinitrobenzenesulfonyl (DNs) group as the receptor unit, they usually suffer from considerable background reaction noise with GSH due to excessive electron deficiency. However, weakening this reactivity is generally accompanied by loss of sensitivity for GSTs, and therefore, finely turning down the reactivity while maintaining certain sensitivity is critical for developing a practical probe.
View Article and Find Full Text PDFExploring high-performance electrocatalysts, especially non-noble metal electrocatalysts, for the oxygen evolution reaction (OER) is critical to energy storage and conversion. Herein, we report for the first time that conjugated microporous polymers (CMPs) incorporating salen can be used as OER electrocatalysts with outstanding performances. The best OER electrocatalyst (salen-CMP-Fe-3) exhibits a low Tafel slope of 63 mV dec and an overpotential of 238 mV at 10 mA cm .
View Article and Find Full Text PDFWe have synthesized a turn-on fluorescent probe, termed NB4OH, to detect cellular hypochlorite. NB4OH is mainly localized in the endoplasmic reticulum and detects ClO- in foam cells. The fluorescence change of the probe was explained by theoretical calculation as a PET process.
View Article and Find Full Text PDFWe developed a high-performance photodetector based on (CHNH)SbI (MASbI) microsingle crystals (MSCs). The MASbI single crystals exhibit a low-trap state density of ∼10 cm and a long carrier diffusion length reaching 3.0 μm, suggesting its great potential for optoelectronic applications.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2018
Luminescent supramolecular lanthanide edifices have many potential applications in biology, environments, and materials science. However, it is still a big challenge to improve the luminescent performance of multinuclear lanthanide assemblies in contrast to their mononuclear counterparts. Herein, we demonstrate that combination of intraligand charge transfer (ILCT) sensitization and coordination-driven self-assembly gives birth to bright Eu tetrahedral cages with a record emission quantum yield of 23.
View Article and Find Full Text PDFThe excited-state orientation hydrogen-bonding dynamics, and vibronic spectra of isoquinoline (IQ) and its cationic form IQc in water have been investigated at the time-dependent density functional theory quantum chemistry level plus Franck-Condon simulation and interpretation. The excited-state orientation hydrogen bond strengthening has been found in IQ:HO complex due to the charge redistribution upon excitation; this is interpreted by simulated 1:1 mixed absorption spectra of free IQ and IQ:HO complex having best agreement with experimental results. Conversely, the orientation hydrogen bond in IQc:HO complex would be strongly weakening in the S state and this is interpreted by simulated absorption spectra of free IQc having best agreement with experimental results.
View Article and Find Full Text PDFCorrection for 'A versatile two-photon fluorescent probe for ratiometric imaging E. coliβ-galactosidase in live cells and in vivo' by Xue-Xiang Zhang et al., Chem.
View Article and Find Full Text PDFWe have described the design, synthesis, spectroscopy and biological applications of NI-βGal, a versatile fluorescent probe to detect E. coliβ-galactosidase in live cells and mice sensitively and directly, which holds great promise for its application in biomedical research such as gene therapy for cancer in the future.
View Article and Find Full Text PDFThe effect of a hydrogen bond on the photochemical synthesis of silver nanoparticles has been investigated via experimental and theoretical methods. In a benzophenone system, the photochemical synthesis process includes two steps, which are that hydrogen abstraction reaction and the following reduction reaction. We found that for the first step, an intermolecular hydrogen bond enhances the proton transfer.
View Article and Find Full Text PDFSupramolecular systems are capable of unique photophysical properties due to possible interactions between subcomponents, such as between an encapsulated molecule and its cage in a host/guest environment. Here, we report that the encapsulation of a chromophore by a metallacage dramatically enhances its photophysical properties. In the visible region, the encapsulated photosensitizer achieves a 6.
View Article and Find Full Text PDFThis protocol is intended to provide chemists and physicists with a tool for predicting the charge carrier mobilities of π-stacked systems such as organic semiconductors and the DNA double helix. An experimentally determined crystal structure is required as a starting point. The simulation involves the following operations: (i) searching the crystal structure; (ii) selecting molecular monomers and dimers from the crystal structure; (iii) using density function theory (DFT) calculations to determine electronic coupling for dimers; (iv) using DFT calculations to determine self-reorganization energy of monomers; and (v) using a numerical calculation to determine the charge carrier mobility.
View Article and Find Full Text PDFOn-the-fly ab initio molecular dynamics calculations have been performed to investigate the relaxation mechanism of green fluorescent protein chromophore anion under vacuum. The CASSCF surface hopping simulation method based on Zhu-Nakamura theory is applied to present the real-time conformational changes of the target molecule. The static calculations and dynamics simulation results suggest that not only the twisting motion around bridging bonds between imidazolinone and phenoxy groups but the strength mode of C=O and pyramidalization character of bridging atom are major factors on the ultrafast fluorescence quenching process of the isolated chromophore anion.
View Article and Find Full Text PDFRhodamine-bromonaphthaleneimide (RB-NI) and rhodamine-bromonaphthalenediimide (RB-NDI) dyads were prepared for switching of the triplet excited states. Bromo-NI or bromo-NDI parts in the dyads are the spin converters, i.e.
View Article and Find Full Text PDFA parallel code for state-to-state quantum dynamics with propagation of time-dependent wavepacket in reactant coordinates has been developed on graphical processing units (GPUs). The propagation of wavepacket and the transformation of wavepacket from reactant to product Jacobi coordinates are entirely calculated on GPUs. A new interpolation procedure is introduced for coordinate transformation to decrease the five-loop computation to two four-loop computations.
View Article and Find Full Text PDF