Publications by authors named "Han-Jiang Lai"

This paper considers a problem of landmark point detection in clothes, which is important and valuable for clothing industry. A novel method for landmark localization has been proposed, which is based on a deep end-to-end architecture using prior of key point associations. With the estimated landmark points as input, a deep network has been proposed to predict clothing categories and attributes.

View Article and Find Full Text PDF

Learning-based hashing is a leading approach of approximate nearest neighbor search for large-scale image retrieval. In this paper, we develop a deep supervised hashing method for multi-label image retrieval, in which we propose to learn a binary "mask" map that can identify the approximate locations of objects in an image, so that we use this binary "mask" map to obtain length-limited hash codes which mainly focus on an image's objects but ignore the background. The proposed deep architecture consists of four parts: 1) a convolutional sub-network to generate effective image features; 2) a binary "mask" sub-network to identify image objects' approximate locations; 3) a weighted average pooling operation based on the binary "mask" to obtain feature representations and hash codes that pay most attention to foreground objects but ignore the background; and 4) the combination of a triplet ranking loss designed to preserve relative similarities among images and a cross entropy loss defined on image labels.

View Article and Find Full Text PDF

In recent years, there has been growing interest in learning to rank. The introduction of feature selection into different learning problems has been proven effective. These facts motivate us to investigate the problem of feature selection for learning to rank.

View Article and Find Full Text PDF