Publications by authors named "Han-Jhou Syu"

Identifying patients in a Target Customer Segment (TCS) is important to determine the demand for, and to appropriately allocate resources for, health care services. The purpose of this study is to propose a two-stage clustering-classification model through (1) initially integrating the RFM attribute and K-means algorithm for clustering the TCS patients and (2) then integrating the global discretization method and the rough set theory for classifying hospitalized departments and optimizing health care services. To assess the performance of the proposed model, a dataset was used from a representative hospital (termed Hospital-A) that was extracted from a database from an empirical study in Taiwan comprised of 183,947 samples that were characterized by 44 attributes during 2008.

View Article and Find Full Text PDF