Given the pollution prevalence of potentially hazardous elements (PTEs) in agricultural soils worldwide, it is crucial to establish a comprehensive approach to accurately assess soil contamination, and quantitatively allocate sources and source-specific risks. In the study, soil contamination was assessed through environmental capacity based on the local geochemical baseline established using PTE contents of the subsoil. The sources of PTEs were quantified through positive matrix factorization (PMF) and GIS mapping.
View Article and Find Full Text PDFThis study explores the pollution characteristics, risks, and sources of heavy metals in small-scale areas. Rongcheng District, Jieyang City, Guangdong Province was considered as the study area and enrichment factor (EF), pollution load index (PLI), potential ecological risk index (RI), and US EPA health risk assessment model were used to evaluate its environmental risk. Moreover, the source apportionment of heavy metals was analyzed through correlation analysis, the characteristic of spatial distribution, and a PMF model.
View Article and Find Full Text PDFTo make pollution evaluation of potentially hazardous elements in the soil more accurately, the regional geochemical baseline concentrations of eight potentially hazardous elements (Cr, Ni, Cu, Zn, As, Cd, Hg, and Pb) were established in Huilai County using cumulative frequency distribution curves. Then, the pollution load index and enrichment factor were applied to estimate the contamination levels, based on these geochemical baseline concentrations. The results suggested that topsoil was moderately polluted by potentially hazardous elements, while Cd pollution in the construction land and As pollution in the farmland was relatively severe.
View Article and Find Full Text PDFIt is necessary to establish local geochemical baseline concentrations (GBCs) due to the lack or the inapplicability of regional background values in the study area. The establishment of GBCs of heavy metal (HM) in soil helps in making the accurate assessment of pollution, and then provides a basis for pollution control. Based on this, a case study was undertaken to study the GBCs of the Jiedong District, Guangdong Province, China.
View Article and Find Full Text PDFHeavy metals (HMs) in soil cause adverse effects on ecosystem and human health. Quantifying ecological risk and human health risk (HHR) from sources can determine priority sources and help to mitigate the risks. In this research, geostatistics and positive matrix factorization (PMF) were used to identify and quantify the sources of soil HMs; and then ecological risk and HHR from different sources under woodland, construction land and farmland were quantitatively calculated by combining the potential ecological risk index (RI) and HHR assessment models with PMF model.
View Article and Find Full Text PDFThe contents of ten heavy metals (Cr, Hg, As, Pb, Ni, Cd, Ti, Cu, Zn and V) in 413 topsoil samples from Puning City, Guangdong Province, China were investigated. Obvious enrichment of Hg, As, Pb, Cd and Zn were presented, and the contents of Hg and As in 5.8% and 3.
View Article and Find Full Text PDFTo investigate contamination level, origins and spatial distribution characteristics of heavy metals (Cu, Pb, Zn, Hg, Ni, Cd, As, and Cr) in agricultural soils of Gaogang Town, a typical industrial transfer-undertaking region of the Pearl River Delta (PRD), China, a total of 162 surface soil samples were collected in August 2016 and determined using inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry and atomic fluorescence spectrometry. Moreover, heavy metals contents were systematically analyzed by pollution index, enrichment factor, multivariate statistical approaches and geostatistical analysis. The results showed that the mean concentrations of Cd, Pb, Zn, Ni, Cu and Hg were higher than the soil background values of Guangdong Province, and the relatively high values of pollution index and enrichment factor indicated that these elements (Cd, Pb, Zn and Hg) had cumulative trends in soil.
View Article and Find Full Text PDF