Uterine estrogenic actions are biphasic, early (phase I) and late (phase II) responses. However, the molecular linkage between these phases is not known. Although certain phase I responses are considered estrogen receptor (ER)alpha and ERbeta independent, the phase II responses are ERalpha dependent.
View Article and Find Full Text PDFThe matrix metalloproteinase (MMP) system is composed of the enzymatic component, the MMPs, and the enzyme inhibitory component, the tissue inhibitors of metalloproteinases or TIMPs. It is well established that the MMP system plays a critical role during the normal development and growth of the endometrium as well as many other physiological processes. Because of the necessity for the balance between MMP and TIMP, it is not surprising that aberrant expression of MMPs and TIMPs is associated with the pathophysiology of many diseases.
View Article and Find Full Text PDFPostnatal uterine development is marked by periods of tissue remodeling. The objective of the present study was to examine the role of tissue inhibitor of metalloproteinase-1 (TIMP-1), a regulator of tissue remodeling events, during postnatal uterine development and to assess the phenotypic consequences of disruption of the TIMP-1 gene product during this time period. To accomplish this goal, wild-type and TIMP-1 null mice were sacrificed at Postnatal Days (PNDs) 5, 10, 15, 20, and 25 and uterine morphology, TIMP expression and matrix metalloproteinase (MMP) activity were assessed.
View Article and Find Full Text PDFTissue inhibitors of metalloproteinases (TIMPs) are expressed within the uteri of virtually all species where they are postulated to control extracellular matrix turnover, cellular apoptosis, and proliferation. The objective of the current study was to examine the steroidal regulation of uterine TIMP expression and to determine the potential role of the TIMP-1 gene product in this regulation. To accomplish these goals, ovariectomized female TIMP-1 wild-type and null mice were treated with estradiol, progesterone, or estradiol and progesterone and killed at various times after steroid administration.
View Article and Find Full Text PDFA sensitive approach based on electrospray ionization tandem mass spectrometry has been employed to profile membrane lipid molecular species in Arabidopsis undergoing cold and freezing stresses. Freezing at a sublethal temperature induced a decline in many molecular species of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) but induced an increase in phosphatidic acid (PA) and lysophospholipids. To probe the metabolic steps generating these changes, lipids of Arabidopsis deficient in the most abundant phospholipase D, PLD alpha, were analyzed.
View Article and Find Full Text PDF