Publications by authors named "Han-Bin Dai"

Melittin (MLT), as a natural active biomolecule, can penetrate the tumor cell membrane to play a role in cancer treatment and will attract more attention in future development of antitumor drugs. The main component of natural bee venom MLT was modified by introducing a pH-sensitive amide bond between the 2,3-dimethyl maleimide (DMMA) and the lysine (Lys) of MLT (MLT-DMMA). MLT and its corresponding modified peptide MLT-DMMA were used for antitumor and biocompatibility validation.

View Article and Find Full Text PDF

Nanotechnology-based antitumor drug delivery systems, known as nanocarriers, have demonstrated their efficacy in recent years. Typically, the size of the nanocarriers is around 100 nm. It is imperative to achieve an optimum size of these nanocarriers which must be designed uniquely for each type of delivery process.

View Article and Find Full Text PDF

Further specific target-ability development of biodegradable nanocarriers is extremely important to promote their security and efficiency in antitumor drug-delivery applications. In this study, a facilely prepared poly(lactic--glycolic acid) (PLGA)-polyethylene glycol (PEG)-folic acid (FA) copolymer was able to self-assemble into nanoparticles with favorable hydrodynamic diameters of around 100 nm and negative surface charge in aqueous solution, which was expected to enhance intracellular antitumor drug delivery by advanced dual tumor-target effects, ie, enhanced permeability and retention induced the passive target, and FA mediated the positive target. Fluorescence-activated cell-sorting and confocal laser-scanning microscopy results confirmed that doxorubicin (model drug) loaded into PLGA-PEG-FA nanoparticles was able to be delivered efficiently into tumor cells and accumulated at nuclei.

View Article and Find Full Text PDF

A novel effervescent-salt-assisted dispersive micro-solid-phase extraction using mesoporous hybrid materials was developed for the extraction of minute traces of constituents in complicated plant preparations. In this study, a special tablet containing carbon dioxide sources (sodium dihydrogenphosphate and sodium carbonate) and the sorbent (mesoporous hybrid materials) was prepared. The effects of different parameters influencing the extraction efficiency such as the concentration of salts, the type and concentration of mesoporous material, pH of diluent, and desorption solvents were investigated and optimized.

View Article and Find Full Text PDF

A magnetic solid-phase extraction method using ionic liquid (IL)-micelle-functionalized mesoporous Fe3O4 microspheres (MFMs) was proposed for the preconcentration of anthraquinones in dietary supplements. The analytes were then determined by ultraperformance liquid chromatography combined with an ultraviolet detector. The extraction parameters, such as the choice of ILs, the concentrations of ILs and MFMs, the pH of diluent, and the concentration of acetic acid in the eluent, were presented.

View Article and Find Full Text PDF

A rapid zwitterionic microemulsion electrokinetic chromatography (ZI-MEEKC) approach coupled with light-emitting-diode-induced fluorescence (LED-IF, 480nm) detection was proposed for the analysis of flavonoids. In the optimization process, we systematically investigated the separation conditions, including the surfactants, cosurfactants, pH, buffers and fluorescence parameters. It was found that the baseline separation of the seven flavonoids was obtained in less than 5min with a running buffer consisting of 92.

View Article and Find Full Text PDF

An ionic liquid (IL)-based one-step micellar extraction procedure was developed for the extraction of multiclass polar analytes (protocatechuic acid, chlorogenic acid, epicatechin, hyperoside, isoquercitrin, quercetin) from hawthorn fruits and their determination using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS). Compared to conventional organic solvent extractions, this newly proposed method was much easier, more sensitive, environmentally friendly, and effective as well. Several important parameters influencing the micellar extraction efficiency are discussed, such as selection of ILs, surfactant concentration, and extraction time.

View Article and Find Full Text PDF

A novel additive of multi-walled carbon nanotubes (MWNTs) dispersed with cationic surfactants or mixed cationic/anionic surfactants was used for MEEKC separation of eight phenolic compounds, four glycosides, and one phenanthraquinone. In this context, several parameters affecting MEEKC separation were studied, including the dispersion agents of MWNTs, MWNTs content, oil type, SDS concentration, and the type and concentration of cosurfactant. Compared with conventional MEEKC, the addition of all types of MWNTs dispersions using single or mixed cationic surfactant solutions in running buffers was especially useful for improving the separation of solutes tested, as they influenced the partitioning between the oil droplets and aqueous phase due to the exceptional electrical properties and large surface areas of MWNTs.

View Article and Find Full Text PDF