Species belonging to the complex (MKC) are frequently isolated from humans and the environment and can cause serious diseases. The most common MKC infections are caused by the species (), leading to tuberculosis-like disease. However, a broad spectrum of virulence, antimicrobial resistance and pathogenicity of these non-tuberculous mycobacteria (NTM) are observed across the MKC.
View Article and Find Full Text PDFN Engl J Med
October 2018
Background: The World Health Organization recommends drug-susceptibility testing of Mycobacterium tuberculosis complex for all patients with tuberculosis to guide treatment decisions and improve outcomes. Whether DNA sequencing can be used to accurately predict profiles of susceptibility to first-line antituberculosis drugs has not been clear.
Methods: We obtained whole-genome sequences and associated phenotypes of resistance or susceptibility to the first-line antituberculosis drugs isoniazid, rifampin, ethambutol, and pyrazinamide for isolates from 16 countries across six continents.
Int J Mycobacteriol
December 2016
In the past two decades, DNA techniques have been increasingly used in the laboratory diagnosis of tuberculosis (TB). The (sub) species of the Mycobacterium tuberculosis complex are usually identified using reverse line blot techniques. The resistance is predicted by the detection of mutations in genes associated with resistance.
View Article and Find Full Text PDFDespite a strict control program for methicillin-resistant Staphylococcus aureus (MRSA) in human medicine in the Netherlands, MRSA was cultured from exudative epidermitis lesions of 4 piglets on a breeding farm, 20 pigs on a supplier farm, and 2 workers on these farms. The MRSA strains were indistinguishable, suggesting direct transmission.
View Article and Find Full Text PDFBackground: To determine the true incidence of hGISA/GISA and its consequent clinical impact, methods must be defined that will reliably and reproducibly discriminate these resistant phenotypes from vancomycin susceptible S. aureus (VSSA).
Methods: This study assessed and compared the ability of eight Dutch laboratories under blinded conditions to discriminate VSSA from hGISA/GISA phenotypes and the intra- and inter-laboratory reproducibility of agar screening plates and the Etest method.