Publications by authors named "Han Xiaoping"

Tumor heterogeneity plays a pivotal role in tumor progression and resistance to clinical treatment. Single-cell RNA sequencing (scRNA-seq) enables us to explore heterogeneity within a cell population and identify rare cell types, thereby improving our design of targeted therapeutic strategies. Here, we use a pan-cancer and pan-tissue single-cell transcriptional landscape to reveal heterogeneous expression patterns within malignant cells, precancerous cells, as well as cancer-associated stromal and endothelial cells.

View Article and Find Full Text PDF

Background: With existing researches identifying an increased rate of long-term conditions (LTCs) among Inflammatory Bowel Disease (IBD) patients, yet there is a lack of exploration into the patterns of comorbidity and prognostic rates for IBD patients with multiple morbidities.

Methods: The study included 8,305 participants who self-reported having IBD, comprising ulcerative colitis (UC) and Crohn's disease (CD). Latent class analysis (LCA) was utilized to create optimal categories of LTC combinations for UC and CD patients with additional long-term conditions.

View Article and Find Full Text PDF

Introduction: Inflammatory bowel disease (IBD) is a multi-organ autoimmune disease that commonly affects the gastrointestinal tract, but can also affect other organs throughout the body. Less is known, however, about kidney involvement in IBD. Although IBD has been associated with chronic kidney disease (CKD) and end-stage renal disease (ESRD), these results have been inconsistent.

View Article and Find Full Text PDF

Background And Aims: Inflammatory bowel disease (IBD) is a common chronic inflammatory bowel disease characterized by diarrhea and abdominal pain. Recently human metabolites have been found to help explain the underlying biological mechanisms of diseases of the intestinal system, so we aimed to assess the causal relationship between human blood metabolites and susceptibility to IBD subtypes.

Methods: We selected a genome-wide association study (GWAS) of 275 metabolites as the exposure factor, and the GWAS dataset of 10 IBD subtypes as the outcome, followed by univariate and multivariate analyses using a two-sample Mendelian randomization study (MR) to study the causal relationship between exposure and outcome, respectively.

View Article and Find Full Text PDF

Background: Limited studies have investigated the relationship between systemic oxidative stress and inflammatory bowel disease (IBD). The purpose of this study was to explore the relationship between oxidative balance score (OBS) and IBD.

Methods: We included 175,808 participants from the UK Biobank database from 2006 to 2010.

View Article and Find Full Text PDF

Background: The Oxidative Balance Score (OBS) is commonly used to assess oxidative stress and provides a comprehensive evaluation of dietary and lifestyle-related exposures. However, there is limited research on the association between OBS and colorectal cancer (CRC), its subsites, and complications. The objective of this study was to assess the relationship between OBS and the risk of CRC, its subsites, and common complications in a large prospective cohort study.

View Article and Find Full Text PDF

Single cell chromatin accessibility profiling and transcriptome sequencing are the most widely used technologies for single-cell genomics. Here, we present Microwell-seq3, a high-throughput and facile platform for high-sensitivity single-nucleus chromatin accessibility or full-length transcriptome profiling. The method combines a preindexing strategy and a penetrable chip-in-a-tube for single nucleus loading and DNA amplification and therefore does not require specialized equipment.

View Article and Find Full Text PDF

Background And Aims: Inflammatory bowel disease (IBD), mainly categorized into Crohn's disease (CD) and ulcerative colitis (UC), is a chronic relapsing gastrointestinal disorder that significantly impairs patients' quality of life. IBD patients often experience comorbidities such as anxiety and depression, and the underlying mechanisms and treatment strategies remain areas of investigation.

Methods: We conducted a Mendelian randomization(MR) analysis utilizing brain image derived phenotypes (IDP) from the UK Biobank database to investigate the causal relationships between IBD and alterations in brain structural morphology and connectivity of neural tracts.

View Article and Find Full Text PDF

Despite recent advances in single-cell genomics, the lack of maps for single-cell candidate cis-regulatory elements (cCREs) in non-mammal species has limited our exploration of conserved regulatory programs across vertebrates and invertebrates. Here, we developed a combinatorial-hybridization-based method for single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) named CH-ATAC-seq, enabling the construction of single-cell accessible chromatin landscapes for zebrafish, Drosophila, and earthworms (Eisenia andrei). By integrating scATAC censuses of humans, monkeys, and mice, we systematically identified 152 distinct main cell types and around 0.

View Article and Find Full Text PDF

Objective: Significant differences have been discovered between subtypes of Crohn's disease (CD) and ulcerative colitis (UC). The role of gut microbiota in promoting the onset of UC and CD is established, but conclusions regarding subtype-specific analyses remain limited.

Methods: This study aims to explore the influence of gut microbiota on subtypes of UC and CD, offering novel insights into the pathogenesis and treatment of UC and CD.

View Article and Find Full Text PDF

Tumor heterogeneity and its drivers impair tumor progression and cancer therapy. Single-cell RNA sequencing is used to investigate the heterogeneity of tumor ecosystems. However, most methods of scRNA-seq amplify the termini of polyadenylated transcripts, making it challenging to perform total RNA analysis and somatic mutation analysis.

View Article and Find Full Text PDF

In vivo differentiation of human pluripotent stem cells (hPSCs) has unique advantages, such as multilineage differentiation, angiogenesis, and close cell-cell interactions. To systematically investigate multilineage differentiation mechanisms of hPSCs, we constructed the in vivo hPSC differentiation landscape containing 239,670 cells using teratoma models. We identified 43 cell types, inferred 18 cell differentiation trajectories, and characterized common and specific gene regulation patterns during hPSC differentiation at both transcriptional and epigenetic levels.

View Article and Find Full Text PDF

A deeper understanding of genetic regulation and functional mechanisms underlying genetic associations with complex traits and diseases is impeded by cellular heterogeneity and linkage disequilibrium. To address these limits, we introduce Huatuo, a framework to decode genetic variation of gene regulation at cell type and single-nucleotide resolutions by integrating deep-learning-based variant predictions with population-based association analyses. We apply Huatuo to generate a comprehensive cell type-specific genetic variation landscape across human tissues and further evaluate their potential roles in complex diseases and traits.

View Article and Find Full Text PDF

Despite extensive efforts to generate and analyze reference genomes, genetic models to predict gene regulation and cell fate decisions are lacking for most species. Here, we generated whole-body single-cell transcriptomic landscapes of zebrafish, Drosophila and earthworm. We then integrated cell landscapes from eight representative metazoan species to study gene regulation across evolution.

View Article and Find Full Text PDF

Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila.

View Article and Find Full Text PDF

The rapid development of high-throughput single-cell RNA sequencing technology offers a good opportunity to dissect cell heterogeneity of animals. A large number of organism-wide single-cell atlases have been constructed for vertebrates such as Homo sapiens, Macaca fascicularis, Mus musculus and Danio rerio. However, an intermediate taxon that links mammals to vertebrates of more ancient origin is still lacking.

View Article and Find Full Text PDF

The Mexican axolotl (Ambystoma mexicanum) is a well-established tetrapod model for regeneration and developmental studies. Remarkably, neotenic axolotls may undergo metamorphosis, a process that triggers many dramatic changes in diverse organs, accompanied by gradually decline of their regeneration capacity and lifespan. However, the molecular regulation and cellular changes in neotenic and metamorphosed axolotls are still poorly investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Waddington's epigenetic landscape serves as a metaphor for how cells differentiate, yet the underlying molecular processes are still not fully understood.
  • Recent advances in single-cell genomics have allowed researchers to develop a detailed cell landscape for mouse lineage differentiation and identify both shared and unique regulatory programs involved in cell maturation.
  • The study highlighted the role of Xbp1 as a crucial and conserved regulator that influences cell-fate decisions across species, contributing valuable insights into the gene-regulatory networks of various mouse cell types.
View Article and Find Full Text PDF

Zebrafish have been found to be a premier model organism in biological and regeneration research. However, the comprehensive cell compositions and molecular dynamics during tissue regeneration in zebrafish remain poorly understood. Here, we utilized Microwell-seq to analyze more than 250,000 single cells covering major zebrafish cell types and constructed a systematic zebrafish cell landscape.

View Article and Find Full Text PDF

Enchondroma (EC) is a common benign bone tumor. It has the risk of malignant transformation to Chondrosarcoma (CS). However, the underlying mechanism is unclear.

View Article and Find Full Text PDF