Publications by authors named "Han Moshage"

Circulating citrate may serve as a proxy for mitochondrial dysfunction which plays a role in the progression of end-stage liver disease (ESLD). This study aimed to determine the extent of alterations in circulating citrate in patients with ESLD, and examined its association with all-cause mortality among ESLD patients while on the waiting list for liver transplantation. Plasma citrate levels were measured using nuclear magnetic resonance spectroscopy in 129 ESLD patients (TransplantLines cohort study; NCT03272841) and compared to levels in 4837 participants of the community-dwelling PREVEND cohort.

View Article and Find Full Text PDF

Background: End-stage liver diseases (ESLDs) are a significant global health challenge due to their high prevalence and severe health impacts. Despite the severe outcomes associated with ESLDs, therapeutic options remain limited. Targeting the activation of hepatic stellate cells (HSCs), key drivers of extracellular matrix accumulation during liver injury presents a novel therapeutic approach.

View Article and Find Full Text PDF

Liver sinusoidal endothelial cells (LSECs) are key targets for addressing metabolic dysfunction-associated steatotic liver disease (MASLD). However, isolating and culturing primary LSECs is challenging due to rapid dedifferentiation, resulting in loss of function. The extracellular matrix (ECM) likely plays a crucial role in maintaining the fate and function of LSECs.

View Article and Find Full Text PDF

Liver transplant recipients (LTRs) have lower long-term survival rates compared with the general population. This underscores the necessity for developing biomarkers to assess post-transplantation mortality. Here we compared plasma trimethylamine-N-oxide (TMAO) levels with those in the general population, investigated its determinants, and interrogated its association with all-cause mortality in stable LTRs.

View Article and Find Full Text PDF

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing rapidly due to the obesity epidemic. In the inflammatory stages of MASLD (MASH), activation of hepatic stellate cells (HSCs) leads to initiation and progression of liver fibrosis. Extracellular vesicles (EVs) are released from all cell types and play an important role in intercellular communication.

View Article and Find Full Text PDF

In chronic liver injury, quiescent hepatic stellate cells (HSCs) transdifferentiate into activated myofibroblast-like cells and produce large amounts of extracellular matrix components, e.g. collagen type 1.

View Article and Find Full Text PDF

Liver sinusoidal endothelial cells (LSECs) play a crucial role in maintaining liver microcirculation and exchange of nutrients in the liver and are thought to be involved in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). The activation of hepatic stellate cells (HSCs) and Kupffer cells (KCs) has been considered to be responsible for the onset of liver fibrosis and the aggravation of liver injury. However, the paracrine regulatory effects of LSECs in the development of MASLD, in particular the role of LSEC-derived extracellular vesicles (EVs) remains unclear.

View Article and Find Full Text PDF

Coumarin derivates have been proposed as a potential treatment for metabolic-dysfunction-associated fatty liver disease (MAFLD). However, the mechanisms underlying their beneficial effects remain unclear. In the present study, we explored the potential of the coumarin derivate esculetin in MAFLD, focusing on hepatocyte lipotoxicity and lipid accumulation.

View Article and Find Full Text PDF

Liver fibrosis is the response of the liver to chronic liver inflammation. The communication between the resident liver macrophages (Kupffer cells [KCs]) and hepatic stellate cells (HSCs) has been mainly viewed as one-directional: from KCs to HSCs with KCs promoting fibrogenesis. However, recent studies indicated that HSCs may function as a hub of intercellular communications.

View Article and Find Full Text PDF

Liver fibrosis results from excessive proliferation of, and collagen production by hepatic stellate cells (HSCs) that is caused by chronic liver injury. No drugs are available to cure liver fibrosis. Hydroxyurea is an anti-proliferative drug that is used in benign and malignant disorders.

View Article and Find Full Text PDF

Background: Epidemiological evidence has shown an association between coffee consumption and reduced risk for chronic liver diseases, including metabolic-dysfunction-associated liver disease (MALFD). Lipotoxicity is a key cause of hepatocyte injury during MAFLD. The coffee component caffeine is known to modulate adenosine receptor signaling via the antagonism of adenosine receptors.

View Article and Find Full Text PDF

Hepatic stellate cells (HSCs) are the key effector cells in liver fibrosis. They are the main producers of excessive amounts of extracellular matrix components during fibrogenesis and therefore a potential target for the treatment of liver fibrosis. Induction of senescence in HSCs may be a promising strategy to slow down, stop, or even reverse fibrogenesis.

View Article and Find Full Text PDF

Decreased circulating branched chain amino acids (BCAA) represent a prominent change in amino acid profiles in patients with end-stage liver disease (ESLD). These alterations are considered to contribute to sarcopenia and hepatic encephalopathy and may relate to poor prognosis. Here, we cross-sectionally analyzed the association between plasma BCAA levels and the severity of ESLD and muscle function in participants of the liver transplant subgroup of TransplantLines, enrolled between January 2017 and January 2020.

View Article and Find Full Text PDF

Bone morphogenetic protein (BMP)-9, a member of the TGFβ-family of cytokines, is believed to be mainly produced in the liver. The serum levels of BMP-9 were reported to be reduced in newly diagnosed diabetic patients and BMP-9 overexpression ameliorated steatosis in the high fat diet-induced obesity mouse model. Furthermore, injection of BMP-9 in mice enhanced expression of fibroblast growth factor (FGF)21.

View Article and Find Full Text PDF

Activation of hepatic stellate cells (HSC) is a key event in the initiation of liver fibrosis. Activated HSCs proliferate and secrete excessive amounts of extracellular matrix (ECM), disturbing liver architecture and function, leading to fibrosis and eventually cirrhosis. Collagen is the most abundant constituent of ECM and proline is the most abundant amino acid of collagen.

View Article and Find Full Text PDF

A molecular characterization of the main phytochemicals and antioxidant activity of (OR) fruit extract was carried out, as well as an evaluation of its hepatoprotective effect against diclofenac (DF)-induced acute liver injury was evaluated. Phenols, flavonoids and betalains were quantified, and antioxidant characterization was performed by means of the ABTS, DPPH and FRAP assays. UPLC-QTOF-MS/MS was used to identify the main biocompounds present in OR fruit extract was carried out via.

View Article and Find Full Text PDF

Several fatty acids, in particular saturated fatty acids like palmitic acid, cause lipotoxicity in the context of non-alcoholic fatty liver disease . Unsaturated fatty acids (e.g.

View Article and Find Full Text PDF

This study aims to determine the effects of diabetes in the retinal and brain microvasculature through gene expression profiling. Twelve male Wistar rats were randomly divided into two groups: streptozotocin-induced diabetic rats and time-matched nondiabetic rats. The retinal microvessels (RMVs) and brain microvessels (BMVs) were mechanically isolated from individual rats.

View Article and Find Full Text PDF

Liver fibrosis is a chronic disease associated with oxidative stress that has a great impact on the population mortality. Due to their antioxidant capacity, we evaluated the protective effect of Opuntia robusta fruit (Or) on liver fibrosis. A nutraceutical characterization of Or was performed and a model of fibrosis was induced with thioacetamide (TAA) in Wistar rats.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease is characterized by disturbed lipid metabolism and increased oxidative stress. These conditions lead to the activation of different cellular response mechanisms, including senescence. Cellular senescence constitutes an important response to injury in the liver.

View Article and Find Full Text PDF

Celiac disease (CeD) is a chronic autoimmune disorder characterized by an intolerance to storage proteins of many grains. CeD is frequently associated with liver damage and steatosis. Bile acid (BA) signaling has been identified as an important mediator in gut-liver interaction and the pathogenesis of non-alcoholic fatty liver disease (NAFLD).

View Article and Find Full Text PDF

Background: The number of patients with non-alcoholic fatty liver disease (NAFLD) is rapidly increasing due to the growing epidemic of obesity. Non-alcoholic steatohepatitis (NASH), the inflammatory stage of NAFLD, is characterized by lipid accumulation in hepatocytes, chronic inflammation and hepatocyte cell death. Scopoletin and umbelliferone are coumarin-like molecules and have antioxidant, anti-cancer and anti-inflammatory effects.

View Article and Find Full Text PDF

Background: Activated hepatic stellate cells (aHSCs) are the main effector cells during liver fibrogenesis. α-1 adrenergic antagonist doxazosin (DX) was shown to be anti-fibrotic in an in vivo model of liver fibrosis (LF), but the mechanism remains to be elucidated. Recent studies suggest that reversion of LF can be achieved by inducing cellular senescence characterized by irreversible cell-cycle arrest and acquisition of the senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF
Article Synopsis
  • Myofibroblasts, primarily derived from hepatic stellate cells, are crucial in liver fibrosis, and senescent hepatic stellate cells have been linked to this condition.
  • These senescent cells stop proliferating and produce less collagen, suggesting that inducing senescence might help slow down liver fibrosis progression.
  • The review discusses the signaling pathways of senescent cells and their effects on liver microenvironments, highlighting senolytics as a potential treatment to eliminate senescent cells and limit their harmful interactions with inflammation.
View Article and Find Full Text PDF